CS 598MEB

Computational Cancer Genomics

Lecture 2

Mohammed El-Kebir

January 20, 2022

Course Information

Course website:

- https://www.el-kebir.net/teaching/CS598MEB/Spring 2022/CS598MEB.htm|

Piazza: (please sign up)

- https://piazza.com/illinois/spring2022/cs598meb

Description:

- This course focuses on recent algorithmic methods in cancer genomics, including somatic variant calling, phylogeny inference and identification of driver mutations. Students will study the underlying principles of these methods and the application of these methods to cancer genomics data.

Lecture Outline

- Recap
- Maximum Parsimony
- Two-state Perfect Phylogeny
- Two-state Perfect Phylogeny Mixtures

Reading

- Lecture notes

Hallmarks of Cancer

Inter-tumor heterogeneity: Every tumor is different!

Figure 1. Acquired Capabilities of Cancer
We suggest that most if not all cancers have acquired the same set of functional capabilities during their development, albeit through various mechanistic strategies.

Cancer is Caused by Somatic Mutations

Inter-tumor heterogeneity: Every tumor is different!

Tumorigenesis: Cell Mutation, Division \& Migration

Clonal Evolution Theory of Cancer [Nowell, 1976]

Intra-Tumor Heterogeneity

Phylogenetic Tree \boldsymbol{T}

Intra-tumor heterogeneity: Every tumor cell is different

Phylogenies are Key to Understanding Cancer

These downstream analyses critically rely on accurate tumor phylogeny inference

Key challenge in phylogenetics:

Accurate phylogeny inference from data at present time

Lecture Outline

- Recap
- Maximum Parsimony
- Two-state Perfect Phylogeny
- Two-state Perfect Phylogeny Mixtures

Reading

- Lecture notes

Character-Based Tree Reconstruction

- Characters may be morphological features
- Shape of beak \{generalist, insect catching, ...\}
- Number of legs $\{2,3,4, .$.
- Hibernation \{yes, no\}
- Character may be nucleotides/amino acids
- $\{\mathrm{A}, \mathrm{T}, \mathrm{C}, \mathrm{G}\}$
- 20 amino acids
- Values of a character are called states
- We assume discrete states

Character-Based Phylogeny Reconstruction

Input characters

Output optimal tree

Question: What is optimal?

Want: Optimization criterion

Character-Based Phylogeny Reconstruction

Input characters

Output optimal tree

Question: What is optimal?

Want: Optimization criterion

Question: How to optimize this criterion?

Want: Algorithm

Character-Based Phylogeny Reconstruction: Input

Characters / states	State 1	State 2
Mouth	Smile	Frown
Eyebrows	Normal	Pointed

Character-Based Phylogeny Reconstruction: Criterion

Question: Which tree is better?

Character-Based Phylogeny Reconstruction: Criterion

(a) Parsimony Score $=3$

(b) Parsimony Score $=2$

Parsimony: minimize number of changes on edges of tree

Why Parsimony?

- Ockham's razor: "simplest" explanation for data
- Assumes that observed character differences resulted from the fewest possible mutations
- Seeks tree with the lowest parsimony score, i.e. the sum of all (costs of) mutations in the tree.

Binary Characters

Characters

$\begin{aligned} & \mathrm{A} \\ & \stackrel{\sim}{\mathscr{O}} \mathrm{~B} \\ & \stackrel{\mathrm{D}}{\sim} \mathrm{n} \end{aligned}$	1	2	3	4	5
	0	1	1	0	0
	0	0	1	1	0
	1	1	1	1	0
D	1	1	0	1	1

Characters only have two possible states

Possible Encoding:
0 : not-mutated
1 : mutated

A Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A=\left[a_{i, j}\right]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given $m \times n$ matrix $A=\left[a_{i, j}\right]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

A Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A=\left[a_{i, j}\right]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given $m \times n$ matrix $A=\left[a_{i, j}\right]$, find a tree T with m leaves labeled
according to A and an assignment of character states to each internal
vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?

Large Maximum Parsimony Phylogeny

- This problem is NP-hard
- Heuristics using local search (tree moves)

1. Start with an arbitrary tree T.
2. Check "neighbors" of T.
3. Move to a neighbor if it provides the best improvement in parsimony/likelihood score.

Local Search: Nearest-Neighbor Interchange (NNI)

Rearrange four subtrees
defined by one internal edge

Phylogenies are Key to Understanding Cancer

These downstream analyses critically rely on accurate tumor phylogeny inference

Key challenge in phylogenetics:

Accurate phylogeny inference from data at present time

Additional Challenge in Cancer Phylogenetics

Additional Challenge in Cancer Phylogenetics

Additional Challenge in Cancer Phylogenetics

normal

Additional challenge in cancer phylogenetics:
 Phylogeny inference from mixed bulk samples at present time

Tumor Phylogeny Inference

Metastatic Colorectal Cancer (Patient CRC2)
[Kim et al., Clin Cancer Res 21(19), 2015]:

- 5 primary samples (P1-P5)
- 2 metastases (M1-M2)
- 412 single-nucleotide variants (SNVs)

n mutations							
		\bigcirc	\bigcirc	\bigcirc			
	${ }^{\text {P1 }}$ (1	11	1	1			
	P2 1	11	1	0			
	P3 1	10	0	1			
	P4 0	01	1	1			
$\stackrel{\cong}{E}$	P5 0	$0 \quad 1$	1	0			
	m1 1	11	1	0			
	M2 0	0	1	1			
Binary Matrix B							

Maximum
Parsimony

Tumor Phylogeny Inference

Metastatic Colorectal Cancer (Patient CRC2)

[Kim et al., Clin Cancer Res 21(19), 2015]:

- 5 primary samples (P1-P5)
- 2 metastases (M1-M2)
- 412 single-nucleotide variants (SNVs)
- 41 mutate more than once (homoplasy)

Maximum
Parsimony

Heuristic for Tumor Phylogeny Inference

Metastatic Colorectal Cancer (Patient CRC2)

[Kim et al., Clin Cancer Res 21(19), 2015]:

- 5 primary samples (P1-P5)
- 2 metastases (M1-M2)
- 412 single-nucleotide variants (SNVs)
- 41 mutate more than once (homoplasy)

Resulting sample tree is not representative of the
 division/mutation history or the migration history

Lecture Outline

- Recap
- Maximum Parsimony
- Two-state Perfect Phylogeny
- Two-state Perfect Phylogeny Mixtures

Reading

- Lecture notes

Somatic Mutations and Cancer

Clonal theory of cancer (Nowell, 1976)

[^0]
Somatic Mutations and Cancer

Progression of Somatic Mutations

$0=$ normal
$1=$ mutated

Root is the normal, founder cell and leaves are cells in tumor.

Progression of Somatic Mutations

Single nucleotide mutation

... CGTAATTAG ...

CGTCATTAG ...
$0=$ normal
$1=$ mutated

Root is the normal, founder cell and leaves are cells in tumor.
Infinite sites assumption: each locus mutates only once.

Infinite Sites Model

Two-state Perfect Phylogeny

Matrix $M \in\{0,1\}^{n \times m}$ has n taxa and m characters

- Taxon f has state 1 for character c $\Leftrightarrow f$ possesses character c

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	0	1
r_{4}	0	0	1	1	0
r_{5}	0	1	0	0	0

Definition

A perfect phylogeny for M is a rooted tree T with n leaves such that:
(1) Each taxon labels only one leaf
(2) Each character labels only one edge
(3) Character possessed by a taxon are on unique path to root

Two-state Perfect Phylogeny - Alternative Definitions

(1) Each taxon labels exactly one leaf
(2) Each character labels exactly one edge
(3) Character possessed by a taxon are on unique path to root

(1) Each taxon labels exactly one leaf
(2) Each node is labeled by $\{0,1\}^{m}$
(3) Nodes labeled with state i for character c form a connected subtree
(1) Each taxon labels exactly one leaf
(2) $T_{c}(i)$ is smallest subtree connecting all leaves labeled with state i for character c
(3) $T_{c}(0)$ and $T_{c}(1)$ are disjoint for all c

Two-state Perfect Phylogeny Problem

Input:

Matrix $M \in\{0,1\}^{n \times m}$ has n taxa and m characters

- Taxon f has state 1 for character c $\Leftrightarrow f$ possesses character c

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	0	1
r_{4}	0	0	1	1	0
r_{5}	0	1	0	0	0

Problem

Given $M \in\{0,1\}^{n \times m}$ does M have a perfect phylogeny?

Try it yourself!

Only one of these matrices can be used to build a perfect phylogeny.
(1) As a group, decide on an approach to try to determine which one is which.
(2) Try out your approach to see if you can construct the tree.
(3) What did you learn from your attempt?

Characters

Characters

The Perfect Phylogeny Problem - Preliminaries

Problem

Given $M \in\{0,1\}^{n \times m}$ does M have a perfect phylogeny?

Definition

$I(c)$ is the set of taxa that possess character c; and $\sigma(f)$ is the set of characters possessed by taxon f.

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	0	1
r_{4}	0	0	1	1	0
r_{5}	0	1	0	0	0

		$c_{1}(2)$	$c_{2}(1)$	$c_{3}(3)$	$c_{4}(5)$	$c_{5}(4)$
	r_{1}	1	1	0	0	0
	r_{2}	0	0	1	0	0
7	r_{3}	1	1	0	1	0
	r_{4}	0	0	1	0	1
	r_{5}	1	0	0	0	0

$$
\begin{aligned}
I\left(c_{1}\right) & =\left\{r_{1}, r_{3}\right\} \\
\sigma\left(r_{1}\right) & =\left\{c_{1}, c_{2}\right\}
\end{aligned}
$$

Sort columns of M s.t. $c<d$ iff $|I(c)| \geq|I(d)|$. Break ties arbitrarily.

- Consider rows of M iteratively
- T_{i} is tree of first i rows of M
- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	1	0
r_{4}	0	0	1	0	1
r_{5}	1	0	0	0	0

- Consider rows of M iteratively

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

- T_{i} is tree of first i rows of M
- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_{i}
- Let v be last node on walk from r matching characters $\sigma(i+1)$
\star Character d is the last match
* Unmatched characters $\tau(i+1)$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	1	0
r_{4}	0	0	1	0	1
r_{5}	1	0	0	0	0

- Consider rows of M iteratively

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

- T_{i} is tree of first i rows of M
- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_{i}
- Let v be last node on walk from r matching characters $\sigma(i+1)$
\star Character d is the last match
* Unmatched characters $\tau(i+1)$
- Extend T_{i} with path Π
$\star \Pi$ has terminals v and $i+1$
$\star \Pi$ has $|\tau(i+1)|+1$ edges labeled by $\tau(i+1)$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	1	0
r_{4}	0	0	1	0	1
r_{5}	1	0	0	0	0

- Consider rows of M iteratively

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

- T_{i} is tree of first i rows of M
- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_{i}
- Let v be last node on walk from r matching characters $\sigma(i+1)$
\star Character d is the last match
\star Unmatched characters $\tau(i+1)$
- Extend T_{i} with path Π
$\star \Pi$ has terminals v and $i+1$
$\star \Pi$ has $|\tau(i+1)|+1$ edges labeled by $\tau(i+1)$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	1	0
r_{4}	0	0	1	0	1
r_{5}	1	0	0	0	0

- Consider rows of M iteratively

$$
c<d \text { iff }|I(c)| \geq|I(d)|
$$

- T_{i} is tree of first i rows of M
- T_{1} is a path graph
- Terminal nodes r and 1
- $|\sigma(1)|+1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_{i}
- Let v be last node on walk from r matching characters $\sigma(i+1)$
* Character d is the last match
* Unmatched characters $\tau(i+1)$
- Extend T_{i} with path Π
$\star \Pi$ has terminals v and $i+1$
$\star \Pi$ has $|\tau(i+1)|+1$ edges labeled by $\tau(i+1)$

	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
r_{1}	1	1	0	0	0
r_{2}	0	0	1	0	0
r_{3}	1	1	0	1	0
r_{4}	0	0	1	0	1
r_{5}	1	0	0	0	0

Lemma

Let $M_{i} \in 0,1^{i \times m}$ be a submatrix of M. If M is conflict-free then T_{i} is a perfect phylogeny for M_{i}.

Lecture Outline

- Recap
- Maximum Parsimony
- Two-state Perfect Phylogeny
- Two-state Perfect Phylogeny Mixtures

Reading

- Lecture notes

Sequencing and Tumor Phylogeny Inference

Sequencing and Tumor Phylogeny Inference

Tumor Phylogeny Inference: Given frequencies \boldsymbol{F}, find phylogeny \boldsymbol{T} and proportions \boldsymbol{U}

Key Challenge in Computational Biology

Translating a biological problem into a computational biology

Perfect Phylogeny Mixture

Assumptions:

- Infinite sites assumption:
a character changes state once
- Error-free data

Restricted PP

1-1 \downarrow Equivalent

Restricted PP Matrix B
Rows of \boldsymbol{U} are proportions:

$$
u_{p j} \geq 0 \text { and } \sum_{j} u_{p j} \leq 1
$$

Perfect Phylogeny Theorem
[Estabrook, 1971]
[Gusfield, 1991]

Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given \boldsymbol{F}, find \boldsymbol{U} and \boldsymbol{B} such that $\boldsymbol{F}=\boldsymbol{U} \boldsymbol{B}$

Previous Work

Variant of PPM:

TrAp [Strino et al., 2013], PhyloSub [Jiao et al., 2014]
CITUP [Malikic et al., 2015], BitPhylogeny [Yuan et al., 2015]
LICHeE [Popic et al., 2015], ...
Restricted PP
Tree \boldsymbol{T}

1-1 \downarrow Equivalent

Restricted PP Matrix B
Rows of \boldsymbol{U} are proportions:

$$
u_{p j} \geq 0 \text { and } \sum_{j} u_{p j} \leq 1
$$

Perfect Phylogeny Theorem
[Estabrook, 1971]
[Gusfield, 1991]

Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given \boldsymbol{F}, find \boldsymbol{U} and \boldsymbol{B} such that $\boldsymbol{F}=\boldsymbol{U} \boldsymbol{B}$

Combinatorial Characterization

- Frequency $f_{p, i}$ is mass of subtree rooted at node that introduced i
- Usage $u_{p, i}$ is mass of node that introduced i

$\bigcirc 0$	n mutations				\bigcirc	clones						
	\bigcirc	0	0	\bigcirc			\bigcirc	6	\bigcirc	6		\bigcirc
$\stackrel{0}{\circ} \mathrm{~s}_{1} 0.8$	0.8	0.8	0.0	0.0	0.0	$\stackrel{\text { c }}{ }$	0.0	0.0	0.	0.0		0.0
${ }_{\text {¢ }}^{0} \mathrm{~S}_{2} 0.7$	0.6	0.0	0.6	0.0	0.0		0.1	0.0	0.	0.6		0.0
$\stackrel{\sim}{\boldsymbol{E}} \mathrm{S}_{3} 0.8$	0.0	0.0	0.0	0.6	0.4			0.0	0.	0.0		0.4
Frequency Matrix F						Mixture Matrix U						

Restricted PP Matrix B

$$
\begin{aligned}
& \text { Rows of } \boldsymbol{U} \text { are proportions: } \\
& \qquad u_{p j} \geq 0 \text { and } \sum_{j} u_{p j} \leq 1
\end{aligned}
$$

Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given \boldsymbol{F}, find \boldsymbol{U} and \boldsymbol{B} such that $\boldsymbol{F}=\boldsymbol{U} \boldsymbol{B}$

Combinatorial Characterization

- Frequency $f_{p, i}$ is mass of subtree rooted at node that introduced i
- Usage $u_{p, i}$ is mass of node that introduced i

Restricted PP Matrix B

Theorem 1:

\boldsymbol{T} is a solution to the PPM if and only if \boldsymbol{T} is a spanning tree of \boldsymbol{G} satisfying the sum condition

Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given \boldsymbol{F}, find \boldsymbol{U} and \boldsymbol{B} such that $\boldsymbol{F}=\boldsymbol{U} \boldsymbol{B}$

Combinatorial Characterization

- Frequency $f_{p, i}$ is mass of subtree rooted at node that introduced i
- Usage $u_{p, i}$ is mass of node that introduced i

Restricted PP Matrix B

Theorem 1:

\boldsymbol{T} is a solution to the PPM if and only if \boldsymbol{T} is a spanning tree of \boldsymbol{G} satisfying the sum condition

Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given \boldsymbol{F}, find \boldsymbol{U} and \boldsymbol{B} such that $\boldsymbol{F}=\boldsymbol{U} \boldsymbol{B}$

Non-uniqueness of Solutions to PPM

Question 1: Can we determine the number of solutions?

Question 2: Can sample solutions uniformly at random?

Summary of Lectures 1 \& 2

- DNA, RNA and proteins are sequences
- Central dogma of molecular biology: DNA -> RNA -> protein
- Problem != algorithm
- Key challenge in computational biology is translating a biological problem into a computational problem
- Cancer is a genetic disease caused by somatic mutations
- Inter-tumor heterogeneity and intra-tumor heterogeneity:
- Not only is every tumor different, but so is every tumor cell...
- Reading:
- "Biology for Computer Scientists" by Lawrence Hunter (http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)

[^0]: "typical tumor": ~10 driver mutations
 100's - 1000's of passenger mutations

