CS 598MEB

Computational Cancer Genomics

Lecture 1

Mohammed El-Kebir

January 18, 2022

Course Staff

Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Tuesdays, 2:15-3:15pm

Developing combinatorial algorithms for studying all stages of cancer progression.

Course Information

Course website:

- https://www.el-kebir.net/teaching/CS598MEB/Spring 2022/CS598MEB.htm|

Piazza: (please sign up)

- https://piazza.com/illinois/spring2022/cs598meb

Description:

- This course focuses on recent algorithmic methods in cancer genomics, including somatic variant calling, phylogeny inference and identification of driver mutations. Students will study the underlying principles of these methods and the application of these methods to cancer genomics data.

Course Objectives

Learn:

- Learn underlying ideas of common algorithms in cancer genomics.
- Learn to translate a biological problem into a computational problem.
- Learn to read and critique scientific papers.
- Learn to propose and conduct independent research.
- Learn to present key ideas of a paper to other people.
- Learn to ask critical questions.

Not learn:

- Will not learn to run popular cancer genomics packages.
- Will not learn how to program.

Grading

- Class participation (20\%)
- Peer reviews
- Asking questions
- Paper presentation (30\%)
- Course project (50\%)
- Proposal
- Report/paper
- Presentation

Tentative Course Schedule

Introductory lectures (Jan to Feb)

- Molecular biology and cancer biology
- Fundamental algorithms in computational biology
- Algorithms in computational genomics

Paper presentations (Mar)

- Student presentation of research/survey paper

Course projects (Apr)

- Proposal presentation
- Final presentation + report

Paper Presentation

- Each student will present a paper picked by the student. The goal of the presentation is to facilitate a discussion, focusing on:
- Presenting the biological problem and corresponding computational problem
- How did the authors solve the problem?
- Did they manage to answer the original biological question?
- How can we improve the results? What are future directions?
- The remaining students are required to write a short peer review
- Summary
- Major and minor comments
- Outlook/future directions

Course Project

- 1-2 students per project
- First write a proposal, which will receive feedback from instructor and fellow students
- Then, conduct research and write a paper
- Pick venue (conference/journal) and use LaTeX style for your paper
- Students will anonymously peer review submitted papers using EasyChair (if time permits)

Lecture Outline

- Primer on Molecular Biology
- Primer on Computational Biology
- Primer on Cancer Biology
- Tumor Phylogeny Inference

Reading

- "Biology for Computer Scientists" by Lawrence Hunter (http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)

Primer on Molecular Biology

Molecular Biology is the field of biology that studies the composition, structure and interactions of cellular molecules - such as nucleic acids and proteins - that carry out the biological processes essential for the cell's functions and maintenance.

Cellular molecules:

1. DNA
2. RNA
3. Protein

DNA

Each strand composed of sequence of covalently bonded nucleotides (bases).

Four nucleotides:

A (adenine)
C (cytosine)
T (thymine)
G (guanine)
$\mathrm{A} \leftrightarrow \rightarrow \mathrm{T}, \quad \mathrm{C} \leftrightarrow \rightarrow \mathrm{G}$ Watson-Crick base-pairing

DNA

Each strand composed of sequence of covalently bonded nucleotides (bases).

Pair of strings from 4 character alphabet

5' ...ACGTGACTGAGGACCGTG CGACTGAGACTGACTGGGT CTAGCTAGACTACGTTTTA TATATATATACGTCGTCGT ACTGATGACTAGATTACAG TGATTTTAAAAAAATATT... $\mathbf{3}^{\prime}$

Single string from 4 character alphabet

- Single-stranded
- A (adenine)
- C (cytosine)
- U (uracil)
- G (guanine)
- Can fold into structures due to base complementarity.

$$
\mathrm{A} \leftrightarrow \rightarrow \mathrm{U}, \quad \mathrm{C} \leftarrow \rightarrow \mathrm{G}
$$

- Comes in many flavors:
mRNA, rRNA, tRNA, tmRNA, snRNA, snoRNA, scaRNA, aRNA, asRNA, piwiRNA, etc.

Protein

- String of amino acids: 20 letter alphabet

...DTIGDWNSPSFFGIQLVSSVHT TLWYRENAFPVLGGFSWLSWFNW HNMGYYYPVYHIGYPMIRCGTHL VPMQFAFQSIARSFALVHWNAPM VLKINPHERQDPVFWPCLYYSVD IRSMHIGYPMIRCYQA...

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	C
Glutamic acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	H
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

Protein

- String of amino acids: 20 letter alphabet
- Folds into 3D structures to perform various functions in cells

Primer on Molecular Biology

Three fundamental molecules:

1. DNA

Information storage.
2. RNA

Old view: Mostly a "messenger". New view: Performs many important functions.
3. Protein

Perform most cellular functions (biochemistry, signaling, control, etc.)

Central Dogma of Molecular Biology

DNA \rightarrow RNA \rightarrow Protein: The process by which cells "read" the genome

First proposed by Francis Crick in 1956.

Transcription and Translation

http://dna-rna.net/wp-content/uploads/2011/08/rnatranscription2.jpg

http://www.frontiers-in-
genetics.org/en/pictures/translation_1.jpg

Transcription and Translation

https://www.khanacademy.org/science/biology/gene-expression-central-dogma/transcription-of-dna-into-rna/a/overview-of-transcription

	U	c	A	G	
U	$\begin{array}{ll} \text { UUU } \\ \text { UUC } & \text { Phenyl- } \\ \text { alanine } & F \\ \text { UUA } \\ \text { UUG_-Leucine } & \text { L } \end{array}$	$\left.\begin{array}{l} \text { UCU } \\ \text { UCC } \\ \text { UCA } \\ \text { UCG } \end{array}\right] \text { Serine }$	UAU - Tyrosine Y UAC UAA Stop codon UAG Stop codon	$\begin{aligned} & \text { UGU-Cysteine C } \\ & \text { UGC } \\ & \text { UGA Stop codon } \\ & \text { UGG Tryptophan } \end{aligned}$	U C A G
C	$\left.\begin{array}{l} \text { CUU } \\ \text { CUC } \\ \text { CUA } \\ \text { CUG } \end{array}\right] \text {-Leucine L }$	$\left.\begin{array}{l} \text { CCU } \\ \text { CCC } \\ \text { CCA } \\ \text { CCG } \end{array}\right] \text {-Proline }$	$\begin{aligned} & \text { CAU-Histidine } \mathrm{H} \\ & \text { CAC } \\ & \text { CAA-Glutamine } \\ & \text { CAG-G } \end{aligned}$	$\left.\begin{array}{l} \text { CGU } \\ \text { CGC } \\ \text { CGA } \\ \text { CGG } \end{array}\right] \text { Arginine }$	U C A G
A	$\left.\begin{array}{l} \text { AUU } \\ \text { AUC } \\ \text { AUA } \end{array}\right] \text { Isoleucine } \begin{gathered} \text { I } \\ \text { AUG } M_{\text {start codon }}^{\text {Methionine }} \end{gathered}$	$\left.\begin{array}{l}\text { ACU } \\ \text { ACC } \\ \text { ACA } \\ \text { ACG }\end{array}\right]$ Threonine T	$\left.\begin{array}{l} \text { AAU } \\ \text { AAC } \\ \text { AAA -Asparagine } \\ \text { AAG } \end{array}\right] \text { Lysine } \mathrm{N}$	$\begin{aligned} & \text { AGU-Serine } \mathrm{S} \\ & \text { AGC } \\ & \text { AGA } \\ & \text { AGG-Arginine } \\ & R \end{aligned}$	U C A G
G	$\left.\begin{array}{l} \text { GUU } \\ \text { GUC } \\ \text { GUA } \\ \text { GUG } \end{array}\right] \text {-Valine } \quad \text { V }$	$\left.\begin{array}{l} \text { GCU } \\ \text { GCC } \\ \text { GCA } \\ \text { GCG } \end{array}\right] \text { Alanine }$	$\begin{aligned} & \text { GAU_Aspartic } \\ & \text { GAC acid D } \\ & \text { GAA_Glutamic } \\ & \text { GAG] acid E } \end{aligned}$		U C A G

http://bioinfo.bisr.res.in/project/crat/pictures/codon.jpg

Lecture Outline

- Primer on Molecular Biology
- Primer on Computational Biology
- Primer on Cancer Biology
- Tumor Phylogeny Inference

Reading

- "Biology for Computer Scientists" by Lawrence Hunter (http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)

What is Computational Biology/Bioinformatics?

> Computational biology and bioinformatics is an interdisciplinary field that develops and applies computational methods to analyze large collections of biological data, such as genetic sequences, cell populations or protein samples, to make new predictions or discover new biology.

Technology and Bioinformatics are Transforming Biology

Until late $20^{\text {th }}$ Century

Hypothesis Generation and Validation
$21^{\text {th }}$ Century and Beyond

Algorithms

Hypothesis Generation and Validation

High throughput technologies

A Deluge of Data

Cost per Genome

A Deluge of Data

Fish-T1K
Transcriptomes of 1000 Fishes

Sequencing Project

Question: What does it mean that we can sequence a genome?

No technology exists that can sequence a complete (human) genome from end to end!

Next-generation
DNA sequencing

Making sense of this data absolutely requires the use and development of algorithms!

Why Study Computational Biology?

Interdisciplinary

 BiologyComputer Science
Mathematics
Statistics
= FUN!

Why choose just 1?

Best Jobs

1. Actuary
2. Audiologist
3. Mathematician
4. Statistician
5. Biomedical Engineer
6. Data Scientist
7. Dental Hygienist
8. Software Engineer
9. Occupational Therapist
10. Computer Systems

Analyst

Worst Jobs
200. Newspaper reporter
199. Lumberjack
198. Enlisted Military Personnel
197. Cook
196. Broadcaster
195. Photojournalist
194. Corrections Officer
193. Taxi Driver
192. Firefighter
191. Mail Carrier

Donald Knuth
Professor emeritus of Computer Science at Stanford University Turing Award winner
"father of the analysis of algorithms."
"I can't be as confident about computer science as I can about biology. Biology easily has 500 years of exciting problems to work on. It's at that level."

Computational Biology: Sequence Alignment

Question: How do we compare two genes/genomes?

Human Genome:
...ACTCGACTGAGAGGATTTCGAGCATGA...

$$
\approx 3.2 \times 10^{9} \mathrm{bp}
$$

Mouse Genome:
...ACTCAACTGAGATTCGAGCTTCAATGA...
$\approx 2.8 \times 10^{9} \mathrm{bp}$

Computational Biology: Genome Assembly

Question: How do we put all the pieces back together?

Computational Biology: Phylogenetics

Phylogenetic Tree of Life

Poly-clonal tumor at sampling

https://en.wikipedia.org/wiki/Phylogenetic_tree
Question: Can we recover how a tumor has evolved overtime?

Question: Can we reconstruct the evolutionary history of different species?

Classical phylogenetic tree

Clonal evolution tree

Computational Biology: Pattern Matching

Question: How do we start to make

 sense of all these sequences?
http://www.genomebiology.com/2009/10/3/R25/figure/F1?highres=y

Computational Biology is Computer Science

1. Sequence alignment
'How do we compare two genes/genomes?’
Dynamic programming: edit distance
2. Genome assembly
'How do we put all the pieces back together?'
Graphs: de Bruijn graph, Eulerian and Hamiltonian paths
3. Phylogenetics
'What is the evolutionary history of different sequences?'
Trees and distances: distance matrices, neighbor joining, hierarchical clustering, Sankoff/Fitch algorithms, perfect phylogeny and compatibility
4. Pattern matching
'How do we start to make sense out of all these sequences?'
Suffix trees/arrays. Burrows-Wheeler transform, Hidden Markov Models (HMMs)

Pet Peeve: Problem != Algorithm

Problem Π with instance X and solution set $\Pi(X)$:

- Decision problem:
- Is $\Pi(X)=\varnothing$?
- Optimization problem:
- Find $y^{*} \in \Pi(X)$ s.t. $f\left(y^{*}\right)$ is optimum.
- Counting problem:
- Compute $|\Pi(X)|$.
- Sampling problem:
- Sample uniformly from $\Pi(X)$.
- Enumeration problem:
- Enumerate all solutions in $\Pi(X)$

Algorithms:

Set of instructions for solving problem.

- Exact
- Heuristic

Key Challenge in Computational Biology

Translating a biological problem into a computational biology

Lecture Outline

- Primer on Molecular Biology
- Primer on Computational Biology
- Primer on Cancer Biology
- Tumor Phylogeny Inference

Reading

- "Biology for Computer Scientists" by Lawrence Hunter (http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)

Cancer Statistics: Incidence and Mortality

The Burden of Cancer in the United States

- In 2018, an estimated 1,735,350 new cases of cancer will be diagnosed in the United States and 609,640 people will die from the disease.
- The number of new cases of cancer (cancer incidence) is 439.2 per 100,000 men and women per year (based on 2011-2015 cases).
- The number of cancer deaths (cancer mortality) is 163.5 per 100,000 men and women per year (based on 2011-2015 deaths).
- Approximately 38.4% of men and women will be diagnosed with cancer at some point during their lifetimes (based on 2013-2015 data).

Source: Surveillance, Epidemiology, and End Results (SEER) Program

Cancer Statistics: Incidence and Mortality

The Burden of Cancer in the United States

- In 2018, an estimated 1,735,350 new cases of cancer will be diagnosed in the United States and 609,640 people will die from the disease.
- The number of new cases of cancer (cancer incidence) is 439.2 per 100,000 men and women per year (based on 2011-2015 cases).
- The number of cancer deaths (cancer mortality) is 163.5 per 100,000 men and women per year (based on 2011-2015 deaths).
- Approximately 38.4% of men and women will be diagnosed with cancer at some point during their lifetimes (based on 2013-2015 data).

$1991 \longrightarrow 2015$

THE OVERALL CANCER DEATH RATE

 IN THE UNITED STATES FELLSource: Surveillance, Epidemiology, and End Results (SEER) Program

Cancer Statistics: Primary Tumor Location

PROSTATE GLAND

Hallmarks of Cancer

Figure 1. Acquired Capabilities of Cancer
We suggest that most if not all cancers have acquired the same set of functional capabilities during their development, albeit through various mechanistic strategies.

Hallmarks of Cancer

Figure 1. Acquired Capabilities of Cancer
We suggest that most if not all cancers have acquired the same set of functional capabilities during their development, albeit through various mechanistic strategies.

A
Component Acquired Capability Example of Mechanism

Self-sufficiency in growth signals Activate H -Ras oncogene

 P纱吅 ∞

Figure 1. Acquired Capabilities of Cancer
We suggest that most if not all cancers have acquired the same set of functional capabilities during their development, albeit through various mechanistic strategies.

Cancer is Caused by Somatic Mutations

Cancer is Caused by Somatic Mutations

Question: Why is there inter-tumor heterogeneity?

Tumorigenesis: Cell Mutation

0
Founder
tumor cell
with somatic mutation: \bigcirc
(e.g. BRAF V600E)

Tumorigenesis: Cell Mutation, Division

Clonal Evolution Theory of Cancer [Nowell, 1976]
with the same mutations $\{O, O\}$

Tumorigenesis: Cell Mutation, Division

Clonal Evolution Theory of Cancer

 [Nowell, 1976]with the same mutations $\{0, O\}$

Tumorigenesis: Cell Mutation, Division

Clonal Evolution Theory of Cancer [Nowell, 1976]

Tumorigenesis: Cell Mutation, Division \& Migration

Clonal Evolution Theory of Cancer [Nowell, 1976]

Intra-Tumor Heterogeneity

Phylogenetic Tree \boldsymbol{T}

Question: Why are tumor phylogenies important?

Phylogenies are Key to Understanding Cancer

Phylogenies are Key to Understanding Cancer

These downstream analyses critically rely on accurate tumor phylogeny inference

Phylogenies are Key to Understanding Cancer

These downstream analyses critically rely on accurate tumor phylogeny inference

Key challenge in phylogenetics:

Accurate phylogeny inference from data at present time

Lecture Outline

- Primer on Molecular Biology
- Primer on Computational Biology
- Primer on Cancer Biology
- Tumor Phylogeny Inference

Reading

- "Biology for Computer Scientists" by Lawrence Hunter (http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)

Character-Based Tree Reconstruction

- Characters may be morphological features
- Shape of beak \{generalist, insect catching, ...\}
- Number of legs $\{2,3,4, .$.
- Hibernation \{yes, no\}
- Character may be nucleotides/amino acids
- $\{\mathrm{A}, \mathrm{T}, \mathrm{C}, \mathrm{G}\}$
- 20 amino acids
- Values of a character are called states
- We assume discrete states

Character-Based Phylogeny Reconstruction

Input characters

Output optimal tree

Question: What is optimal?

Want: Optimization criterion

Character-Based Phylogeny Reconstruction

Input characters

Output optimal tree

Question: What is optimal?

Want: Optimization criterion

Question: How to optimize this criterion?

Want: Algorithm

Character-Based Phylogeny Reconstruction: Input

Characters / states	State 1	State 2
Mouth	Smile	Frown
Eyebrows	Normal	Pointed

Character-Based Phylogeny Reconstruction: Criterion

Question: Which tree is better?

Character-Based Phylogeny Reconstruction: Criterion

(a) Parsimony Score $=3$

(b) Parsimony Score $=2$

Parsimony: minimize number of changes on edges of tree

Why Parsimony?

- Ockham's razor: "simplest" explanation for data
- Assumes that observed character differences resulted from the fewest possible mutations
- Seeks tree with the lowest parsimony score, i.e. the sum of all (costs of) mutations in the tree.

A Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A=\left[a_{i, j}\right]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given $m \times n$ matrix $A=\left[a_{i, j}\right]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

A Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A=\left[a_{i, j}\right]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given $m \times n$ matrix $A=\left[a_{i, j}\right]$, find a tree T with m leaves labeled
according to A and an assignment of character states to each internal
vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?

Large Maximum Parsimony Phylogeny

- This problem is NP-hard
- Heuristics using local search (tree moves)

1. Start with an arbitrary tree T.
2. Check "neighbors" of T.
3. Move to a neighbor if it provides the best improvement in parsimony/likelihood score.

Example: Nearest-Neighbor Interchange (NNI)

Rearrange four subtrees
defined by one internal edge

Phylogenies are Key to Understanding Cancer

These downstream analyses critically rely on accurate tumor phylogeny inference

Key challenge in phylogenetics:

Accurate phylogeny inference from data at present time

Additional Challenge in Cancer Phylogenetics

Additional Challenge in Cancer Phylogenetics

Additional Challenge in Cancer Phylogenetics

normal

Additional challenge in cancer phylogenetics:
 Phylogeny inference from mixed bulk samples at present time

Tumor Phylogeny Inference

Metastatic Colorectal Cancer (Patient CRC2)
[Kim et al., Clin Cancer Res 21(19), 2015]:

- 5 primary samples (P1-P5)
- 2 metastases (M1-M2)
- 412 single-nucleotide variants (SNVs)

n mutations							
		\bigcirc	\bigcirc	\bigcirc			
	$\mathrm{P}^{1} 1$	11	1	1			
	P2 1	11	1	0			
	P3 1	10	0	1			
	P4 0	01	1	1			
$\stackrel{\cong}{E}$	P5 0	$0 \quad 1$	1	0			
	m1 1	11	1	0			
	M2 0	0	1	1			
Binary Matrix B							

Maximum
Parsimony

Tumor Phylogeny Inference

Metastatic Colorectal Cancer (Patient CRC2)

[Kim et al., Clin Cancer Res 21(19), 2015]:

- 5 primary samples (P1-P5)
- 2 metastases (M1-M2)
- 412 single-nucleotide variants (SNVs)
- 41 mutate more than once (homoplasy)

Heuristic for Tumor Phylogeny Inference

Metastatic Colorectal Cancer (Patient CRC2)

[Kim et al., Clin Cancer Res 21(19), 2015]:

- 5 primary samples (P1-P5)
- 2 metastases (M1-M2)
- 412 single-nucleotide variants (SNVs)
- 41 mutate more than once (homoplasy)

Resulting sample tree is not representative of the
 division/mutation history or the migration history

Summary

- DNA, RNA and proteins are sequences
- Central dogma of molecular biology: DNA -> RNA -> protein
- Problem != algorithm
- Key challenge in computational biology is translating a biological problem into a computational problem
- Cancer is a genetic disease caused by somatic mutations
- Inter-tumor heterogeneity and intra-tumor heterogeneity:
- Not only is every tumor different, but so is every tumor cell...
- Reading:
- "Biology for Computer Scientists" by Lawrence Hunter (http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)

