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Course Staff
Instructor:
• Mohammed El-Kebir (melkebir)
• Office hours: Tuesdays, 2:15-3:15pm
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Developing combinatorial 
algorithms for studying all 

stages of cancer progression.



Course Information
Course website:
• https://www.el-kebir.net/teaching/CS598MEB/Spring_2022/CS598MEB.html

Piazza: (please sign up)
• https://piazza.com/illinois/spring2022/cs598meb

Description:
• This course focuses on recent algorithmic methods in cancer genomics, 

including somatic variant calling, phylogeny inference and identification of 
driver mutations. Students will study the underlying principles of these 
methods and the application of these methods to cancer genomics data. 
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https://www.el-kebir.net/teaching/CS598MEB/Spring_2022/CS598MEB.html
https://piazza.com/illinois/spring2022/cs598meb


Course Objec6ves
Learn:
• Learn underlying ideas of common algorithms in cancer genomics.
• Learn to translate a biological problem into a computational problem.
• Learn to read and critique scientific papers.
• Learn to propose and conduct independent research.
• Learn to present key ideas of a paper to other people.
• Learn to ask critical questions.

Not learn:
• Will not learn to run popular cancer genomics packages.
• Will not learn how to program.
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Grading
• Class participation (20%)

• Peer reviews
• Asking questions

• Paper presentation (30%)

• Course project (50%)
• Proposal
• Report/paper
• Presentation
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Tentative Course Schedule
Introductory lectures (Jan to Feb)
• Molecular biology and cancer biology
• Fundamental algorithms in computational biology
• Algorithms in computational genomics

Paper presentations (Mar)
• Student presentation of research/survey paper

Course projects (Apr)
• Proposal presentation
• Final presentation + report
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Paper Presentation
• Each student will present a paper picked by the student. The goal of the 

presentation is to facilitate a discussion, focusing on:
• Presenting the biological problem and corresponding computational problem
• How did the authors solve the problem?
• Did they manage to answer the original biological question?
• How can we improve the results? What are future directions?

• The remaining students are required to write a short peer review
• Summary
• Major and minor comments
• Outlook/future directions
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Course Project
• 1-2 students per project
• First write a proposal, which will receive feedback from instructor and fellow 

students
• Then, conduct research and write a paper
• Pick venue (conference/journal) and use LaTeX style for your paper
• Students will anonymously peer review submitted papers using EasyChair

(if time permits)

8



Lecture Outline
• Primer on Molecular Biology
• Primer on Computa[onal Biology
• Primer on Cancer Biology
• Tumor Phylogeny Inference

Reading
• “Biology for Computer Scien[sts” by Lawrence Hunter 

(h`p://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)
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Primer on Molecular Biology
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Molecular Biology is the field 
of biology that studies the composition, 
structure and interactions of 
cellular molecules – such as nucleic 
acids and proteins – that carry out 
the biological processes essential for the 
cell's functions and maintenance.

https://www.nature.com/subjects/molecular-biology

Cellular molecules:
1. DNA
2. RNA
3. Protein



DNA
Each strand composed of sequence of covalently bonded nucleoEdes (bases).

A ßà T, C ßàG  Watson-Crick base-pairing

Four nucleotides: 
A (adenine) 
C (cytosine)
T (thymine) 
G (guanine)
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DNA
Each strand composed of sequence of covalently bonded nucleotides (bases).

…ACGTGACTGAGGACCGTG…
…||||||||||||||||||…
…TGCACTGACTCCTGGCAC…

Pair of strings 
from 4 character 

alphabet

Single string 
from 4 character 

alphabet

5’ 3’

3’ 5’

…ACGTGACTGAGGACCGTG
CGACTGAGACTGACTGGGT
CTAGCTAGACTACGTTTTA
TATATATATACGTCGTCGT
ACTGATGACTAGATTACAG
TGATTTTAAAAAAATATT…

5’

3’
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RNA
• Single-stranded
• A (adenine) 
• C (cytosine)
• U (uracil) 
• G (guanine)

• Can fold into structures due to 
base complementarity.

A ßà U, C ßàG

• Comes in many flavors:
mRNA, rRNA, tRNA, tmRNA, snRNA, 
snoRNA, scaRNA, aRNA, asRNA, piwiRNA, etc.
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Protein
• String of amino acids: 20 

letter alphabet
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…DTIGDWNSPSFFGIQLVSSVHT
TLWYRENAFPVLGGFSWLSWFNW
HNMGYYYPVYHIGYPMIRCGTHL
VPMQFAFQSIARSFALVHWNAPM
VLKINPHERQDPVFWPCLYYSVD
IRSMHIGYPMIRCYQA…



Protein
• String of amino acids: 20 

letter alphabet
• Folds into 3D structures to 

perform various functions 
in cells
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Primer on Molecular Biology

Three fundamental molecules:
1. DNA

Information storage.  

2. RNA
Old view: Mostly a “messenger”.
New view: Performs many important 
functions.

3. Protein
Perform most cellular functions 
(biochemistry, signaling, control, etc.)
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Central Dogma of Molecular Biology

DNA à RNA à Protein: 
The process by which cells 
“read” the genome

First proposed by Francis Crick in 1956.

Start here
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Transcription and Translation

http://dna-rna.net/wp-content/uploads/2011/08/rna-
transcription2.jpg

hBp://www.fronDers-in-
geneDcs.org/en/pictures/translaDon_1.jpg
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Transcription and Translation

https://www.khanacademy.org/science/biology/gene-
expression-central-dogma/transcription-of-dna-into-
rna/a/overview-of-transcription

http://bioinfo.bisr.res.in/project/crat/pictures/codon.jpg
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Lecture Outline
• Primer on Molecular Biology
• Primer on Computational Biology
• Primer on Cancer Biology
• Tumor Phylogeny Inference

Reading
• “Biology for Computer Scientists” by Lawrence Hunter 

(http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)
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What is Computational Biology/Bioinformatics?
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Computational biology and bioinformatics is an 
interdisciplinary field that develops and 
applies computational methods to analyze large 
collections of biological data, such as genetic sequences, 
cell populations or protein samples, to make new 
predictions or discover new biology.

https://www.nature.com/subjects/computational-biology-and-bioinformatics



Technology and Bioinforma2cs are Transforming Biology

Until late 20th Century

Hypothesis Generation 
and Validation

21th Century and Beyond

High throughput technologies

Hypothesis Generation 
and Validation

Algorithms
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A Deluge of Data
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A Deluge of Data
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Question: What does it mean that we can sequence a genome?

No technology exists that can sequence a 
complete (human) genome from end to end!

Genome
Millions -billions 
nucleoXdes

Next-generation
DNA sequencing

10-100’s million noisy reads
Reads: 30-1000 nucleotides

… GGTAGTTAG …

… TATAATTAG …

… AGCCATTAG …

… CGTACCTAG …

… CATTCAGTAG …

… GGTAAACTAG …

Making sense of this data absolutely requires the use and 
development of algorithms!
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Why Study Computational Biology?
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Interdisciplinary
Biology
Computer Science
Mathematics
Statistics

= FUN!

Why choose just 1?

Best Jobs Worst Jobs

1. Actuary 200. Newspaper reporter

2. Audiologist 199. Lumberjack

3. Mathematician 198. Enlisted Military 
Personnel

4. Statistician 197. Cook

5. Biomedical Engineer 196. Broadcaster

6. Data Scientist 195. Photojournalist

7. Dental Hygienist 194. Corrections Officer

8. Software Engineer 193. Taxi Driver

9. Occupational Therapist 192. Firefighter

10. Computer Systems 
Analyst

191. Mail Carrier

http://www.careercast.com/jobs-rated/jobs-rated-report-2015-ranking-top-200-jobs



“I can’t be as confident about computer science as I can 
about biology. Biology easily has 500 years of exciting 
problems to work on. It’s at that level.”

Donald Knuth
Professor emeritus of Computer Science at Stanford University
Turing Award winner
“father of the analysis of algorithms.”
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Computational Biology: Sequence Alignment

Question: How do we compare two genes/genomes?

vs.

Human Genome:
…ACTCGACTGAGAGGATTTCGAGCATGA… …ACTCAACTGAGATTCGAGCTTCAATGA…

Mouse Genome:

≈3.2 x 109 bp ≈2.8 x 109 bp
28



Computational Biology: Genome Assembly

… GGTAGTTAG …

… TATAATTAG …

… AGCCATTAG …

… CGTACCTAG …

… CATTCAGTAG …

… GGTAAACTAG …

Question: How do we put all the pieces back together?
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Computational Biology: Phylogenetics

https://scientificbsides.wordpress.com/2014/06/09/inferring-tumour-evolution-2-comparison-to-classical-phylogenetics/

https://en.wikipedia.org/wiki/Phylogenetic_tree

Question: Can we 
reconstruct the 
evolutionary history of 
different species?

Question: Can we recover 
how a tumor has evolved 
overtime?
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Computational Biology: Pattern Matching

Question: How do we start to make 
sense of all these sequences?

Suffix Trees

http://www.genomebiology.com/2009/10/3/R25/figure/F1?highres=y

Burrows Wheeler Transform

Motif Finding
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Computational Biology is Computer Science
1. Sequence alignment

‘How do we compare two genes/genomes?’ 
Dynamic programming: edit distance

2. Genome assembly
‘How do we put all the pieces back together?’ 
Graphs: de Bruijn graph, Eulerian and Hamiltonian paths

3. Phylogenetics
‘What is the evolutionary history of different sequences?’ 
Trees and distances: distance matrices, neighbor joining, hierarchical clustering, 
Sankoff/Fitch algorithms, perfect phylogeny and compatibility

4. Pattern matching
‘How do we start to make sense out of all these sequences?’
Suffix trees/arrays. Burrows-Wheeler transform, Hidden Markov Models (HMMs)
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Pet Peeve: Problem != Algorithm
Problem Π with instance 𝑋 and solution set Π 𝑋 :
• Decision problem:
• Is Π 𝑋 = ∅?

• Optimization problem:
• Find 𝑦∗ ∈ Π 𝑋 s.t. 𝑓(𝑦∗) is optimum.

• Counting problem:
• Compute Π 𝑋 .

• Sampling problem:
• Sample uniformly from Π 𝑋 .

• Enumeration problem:
• Enumerate all solutions in Π 𝑋
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Algorithms:
Set of instructions for 
solving problem.
• Exact
• Heuristic



Key Challenge in Computational Biology

34
Translating a biological problem into a computational biology

Biological
question

Analyzing
complexity &
combinatorial

structure

Formulating a
combinatorial

problem

Designing an
algorithm

Interpreting
solutions and
validating the

algorithm

?



Lecture Outline
• Primer on Molecular Biology
• Primer on Computational Biology
• Primer on Cancer Biology
• Tumor Phylogeny Inference

Reading
• “Biology for Computer Scientists” by Lawrence Hunter 

(http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)
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Cancer Statistics: Incidence and Mortality
The Burden of Cancer in the United States
• In 2018, an estimated 1,735,350 new cases of cancer 

will be diagnosed in the United States and 609,640 
people will die from the disease.
• The number of new cases of cancer (cancer incidence) 

is 439.2 per 100,000 men and women per year 
(based on 2011–2015 cases).
• The number of cancer deaths (cancer mortality) is 

163.5 per 100,000 men and women per year 
(based on 2011–2015 deaths).
• Approximately 38.4% of men and women will be 

diagnosed with cancer at some point during their 
lifetimes (based on 2013–2015 data).

Source: Surveillance, Epidemiology, and End Results 
(SEER) Program

36

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046145&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000496502&version=Patient&language=English
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Cancer Statistics: Primary Tumor Location
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90% of cancer paPents die of metastasis [Gupta, G. P. & Massagué, Cell, 2006]



Hallmarks of Cancer
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Hallmarks of Cancer
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Inter-tumor heterogeneity:
Every tumor is different!



Hallmarks of Cancer
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Cancer is Caused by Soma6c Muta6ons
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Cancer is Caused by Somatic Mutations
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Question: Why is there 
inter-tumor heterogeneity?
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Founder 
tumor cell
with somatic mutation: 
(e.g. BRAF V600E)

Tumorigenesis: Cell Mutation
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Clonal expansion

Tumorigenesis: Cell Mutation, Division
Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Clone is a group              of cells 
with the same mutations {    ,    }
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New clones

Tumorigenesis: Cell Mutation, Division
Clonal Evolu@on Theory of Cancer 
[Nowell, 1976]

Clone is a group              of cells 
with the same mutations {    ,    }
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Intra-Tumor 
Heterogeneity

Tumorigenesis: Cell Mutation, Division
Clonal Evolution Theory of Cancer 
[Nowell, 1976]
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Phylogenetic 
Tree T

Intra-Tumor 
Heterogeneity

Question:  Why are tumor phylogenies important?

Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Tumorigenesis: Cell Mutation, Division & Migration
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Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

Phylogenies are Key to Understanding Cancer
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Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

These downstream analyses critically rely on accurate tumor 
phylogeny inference

Phylogenies are Key to Understanding Cancer



Key challenge in phylogenetics:
Accurate phylogeny inference from data at present time
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Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

These downstream analyses critically rely on accurate tumor 
phylogeny inference

Phylogenies are Key to Understanding Cancer



Lecture Outline
• Primer on Molecular Biology
• Primer on Computational Biology
• Primer on Cancer Biology
• Tumor Phylogeny Inference

Reading
• “Biology for Computer Scientists” by Lawrence Hunter 

(http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)
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Character-Based Tree Reconstruction
• Characters may be morphological features
• Shape of beak {generalist, insect catching, ...} 
• Number of legs {2,3,4, ..}
• Hibernation {yes, no}

• Character may be nucleotides/amino acids
• {A, T, C, G}
• 20 amino acids

• Values of a character are called states
• We assume discrete states
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Character-Based Phylogeny Reconstruction

23

Input
characters

Output
optimal tree

Question: What is optimal?

Want: Optimization criterion



Character-Based Phylogeny Reconstruction
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Input
characters

Output
optimal tree

Question: What is optimal?

Want: Optimization criterion

Question: How to optimize this criterion?

Want: Algorithm



Character-Based Phylogeny Reconstruction: Input
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Characters / states State 1 State 2
Mouth Smile Frown
Eyebrows Normal Pointed



Character-Based Phylogeny Reconstruction: Criterion
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Question: Which tree is better?



Character-Based Phylogeny Reconstruction: Criterion

27

Parsimony: minimize number of changes on edges of tree



Why Parsimony?

• Ockham’s razor: “simplest” explanation 
for data
• Assumes that observed character

differences resulted from the fewest 
possible mutations
• Seeks tree with the lowest parsimony 

score, i.e. the sum of all (costs of) 
mutations in the tree.
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A Small and a Large Problem
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Small Maximum Parsimony Phylogeny Problem:
Given 𝑚 × 𝑛 matrix 𝐴 = [𝑎!,#] and tree 𝑇 with 𝑚 leaves, find 

assignment of character states to each internal vertex of 𝑇
with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given 𝑚 × 𝑛 matrix 𝐴 = [𝑎!,#], find a tree 𝑇 with 𝑚 leaves labeled 

according to 𝐴 and an assignment of character states to each internal 
vertex of 𝑇 with minimum parsimony score.



A Small and a Large Problem
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Small Maximum Parsimony Phylogeny Problem:
Given 𝑚 × 𝑛 matrix 𝐴 = [𝑎!,#] and tree 𝑇 with 𝑚 leaves, find 

assignment of character states to each internal vertex of 𝑇
with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given 𝑚 × 𝑛 matrix 𝐴 = [𝑎!,#], find a tree 𝑇 with 𝑚 leaves labeled 

according to 𝐴 and an assignment of character states to each internal 
vertex of 𝑇 with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?



Large Maximum Parsimony Phylogeny
• This problem is 

NP-hard

• Heuristics using 
local search (tree 
moves)
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Example: Nearest-Neighbor Interchange (NNI)
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Key challenge in phylogene?cs:
Accurate phylogeny inference from data at present \me

Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

These downstream analyses critically rely on accurate tumor 
phylogeny inference

Phylogenies are Key to Understanding Cancer
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tumor

normal

normal

tumor

human reference genome (3*10^9 bp)
aligned read (100 bp)

Additional Challenge in Cancer Phylogenetics
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tumor

normal

normal

tumor

human reference genome (3*10^9 bp)
aligned read (100 bp)
ƐŝŶŐůĞ�ŶƵĐůĞŽƟĚĞ�ǀĂƌŝĂŶƚ�;^EsͿ

Additional Challenge in Cancer Phylogenetics



Additional challenge in cancer phylogenetics:
Phylogeny inference from mixed bulk samples at present time
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Additional Challenge in Cancer Phylogenetics
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Tumor Phylogeny Inference

n mutations

Binary Matrix B
m

sa
m

pl
es

M2

M1

P1

P2

P3

P4

P5

0

BBBBBBBB@

1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 1
0 1 1 0 0 0
0 1 0 1 0 1
1 1 0 0 1 0
0 1 1 1 1 1

1

CCCCCCCCA

Metasta/c Colorectal Cancer (Pa/ent CRC2)
[Kim et al., Clin Cancer Res 21(19), 2015]:
• 5 primary samples (P1-P5)
• 2 metastases (M1-M2)
• 412 single-nucleo_de variants (SNVs)

Maximum
Parsimony
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Tumor Phylogeny Inference

n mutations

Binary Matrix B
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CCCCCCCCA

Metastatic Colorectal Cancer (Patient CRC2)
[Kim et al., Clin Cancer Res 21(19), 2015]:
• 5 primary samples (P1-P5)
• 2 metastases (M1-M2)
• 412 single-nucleotide variants (SNVs)
• 41 mutate more than once (homoplasy)
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Heuristic for Tumor Phylogeny Inference

n mutations
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Metastatic Colorectal Cancer (Patient CRC2)
[Kim et al., Clin Cancer Res 21(19), 2015]:
• 5 primary samples (P1-P5)
• 2 metastases (M1-M2)
• 412 single-nucleotide variants (SNVs)
• 41 mutate more than once (homoplasy)
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Summary
• DNA, RNA and proteins are sequences

• Central dogma of molecular biology: DNA -> RNA -> protein

• Problem != algorithm

• Key challenge in computational biology is translating a biological problem into a 
computational problem

• Cancer is a genetic disease caused by somatic mutations

• Inter-tumor heterogeneity and intra-tumor heterogeneity:
• Not only is every tumor different, but so is every tumor cell…

• Reading:
• “Biology for Computer Scientists” by Lawrence Hunter 

(http://www.el-kebir.net/teaching/CS466/Hunter_BIO_CS.pdf)
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