Descendant Cell Fraction: Accounting for Mutation Loss in Cancer Evolution

Mohammed El-Kebir¹, Simone Zaccaria², <u>Gryte Satas^{2,3}</u> and Ben Raphael² ¹University of Illinois at Urbana Champaign, Department of Computer Science

²Princeton University, Department of Computer Science

³Brown University, Department of Computer Science

ISMB/HitSeq 2019

Cancer is an evolutionary process

Founder tumor cell with initial set of somatic mutations:

Clonal Expansion

Time

Cancer is an evolutionary process

Founder tumor cell with initial set of somatic mutations: 🖶 🔦

Clonal Expansion

Further Clonal Expansions

Time

Cancer is an evolutionary process

Founder tumor cell with initial set of somatic mutations:

Clonal Expansion

Further Clonal Expansions

Tumor Evolution is Key to Understanding and Treating Cancer

Identify targets for treatment

Reconstruct metastatic development

Understanding population dynamics and selection in tumors

Clonal expansions \rightarrow mutation clusters

Clustering mutations by VAF

<u>Cancer Cell Fraction (CCF)</u>: proportion of cancer cells with mutation

Same branch

Clustering mutations by VAF

Clustering mutations by VAF

SciClone (Miller et al., PLOS CB 2014), Clomial (Zare et al., PLOS CB, 2014), ...

Copy-number aberrations alter VAF:CCF correspondence

SciClone (Miller et al., PLOS CB 2014), Clomial (Zare et al., PLOS CB, 2014), ...

Clustering mutations by CCF

CCFs are not identifiable from VAFs & CNAs Non-identifiability 80% VAF = 0.320% Time 20% 20% 20% 60% 60% 20% 0 **%** Sample $CCF_{A} = 0.6$ CCF = 0.4Variant Allele Frequency (VAF) Same CCF Same branch 80% 20% **CNA** Data Cluster **PyClone** (Roth et al., *Nat Meth* 2014), **DPClust** (Dentro et al., *Biorxiv* 2018), etc.

CCFs are not identifiable from VAFs & CNAs Non-identifiability 80% VAF = 0.320% Time 60% 20% 20% 60% 20% _ ₽ **\$** Sample $CCF_{\wedge} = 0.$ $CCF_{A} = 0.6$ Variant Allelé Frequency (VAF) Same CCF Same branch 80% 20% **CNA** Data Cluster **PyClone** (Roth et al., *Nat Meth* 2014), **DPClust** (Dentro et al., *Biorxiv* 2018), etc.

Summary: Current approaches for mutation clustering

Quantity:	VAF	CCF
Identifiable	YES	NO
Accounts for copy-number aberrations	NO	YES
Accounts for mutation losses	NO	NO

New Approach: Descendent Cell Fraction (DCF) accounts for mutation losses

Cancer Cell Fraction (CCF):

proportion of extant cells containing SNV

Descendent Cell Fraction (DCF):

proportion of extant cells *descending from cell* that first introduced SNV

Summary: Mutation Clustering Approaches

Quantity:	VAF	CCF	DCF
Identifiable	YES	NO	NO
Accounts for copy-number aberrations	NO	YES	YES
Accounts for mutation losses	NO	NO	YES

DeCiFer: *Simultaneous* clustering of mutations and calculation of DCF

DeCiFer: *Simultaneous* clustering of mutations and calculation of DCF

DeCiFer: *Simultaneous* clustering of mutations and calculation of DCF

DeCiFer: DCF Clustering Algorithm

identifiability of DCF values

Prostate Cancer Patient A17

Metastatic prostate cancer patient A17: 198 SNVs from 5 bulk tumor samples (Gundem et al., *Nature* 2015)

Prostate Cancer Patient A17

Metastatic prostate cancer patient A17: 198 SNVs from 5 bulk tumor samples (Gundem et al., *Nature* 2015)

Mutation clusters: Published: 13 clusters DeCiFer: 5 clusters

Prostate Cancer Patient A17

Metastatic prostate cancer patient A17: 198 SNVs from 5 bulk tumor samples (Gundem et al., *Nature* 2015)

Mutation clusters: Published: 13 clusters DeCiFer: 5 clusters Truncal Cluster: Published: 111 mutations DeCiFer: 129 mutations

Simulations

180 instances for each #clusters $k \in \{3, 4, 5\}$ with copy number loss (#SNVs $\in \{50, 100, 500\}$, #samples $\in \{2, 3, 4\}$)

Conclusions

- Mutation clusters indicate SNVs present on same phylogenetic branch
- Clustering mutations by VAF or CCF does not account for mutation losses
- Descendent Cell Fraction (DCF) accounts for mutation losses
- **DeCiFer** simultaneously clusters and calculates DCF values to better handle non-identifiability
- **DeCiFer** leads to more accurate clustering on simulated data, and simpler tumor composition on prostate cancer data

Acknowledgements

Mohammed El-Kebir

Simone Zaccaria

Ben Raphael

Raphael Group

