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Cancer Phylogenetics Pipeline
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Outline
• Metastasis
• Maximum parsimony
• Problem statement
• Complexity
• Algorithm & results
• Problem variants

Reading:
• M. El-Kebir, G. Satas and B.J. Raphael. Inferring parsimonious migration histories 

for metastatic cancers. Nature Genetics, 50:718-726, 2018.
• M. El-Kebir†. Parsimonious Migration History Problem: Complexity and Algorithms. 

WABI 2018, Helsinki, Finland, August 20-22, 2018.
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Clonal Theory of Cancer 
[Nowell, 1976]

Tumorigenesis: (i) Cell Mutation
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Clonal Theory of Cancer 
[Nowell, 1976]

Tumorigenesis: (i) Cell Mutation, (ii) Cell Division
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Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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Key Challenge in Computational Biology
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Goal: Given phylogenetic tree T, find parsimonious vertex labeling ℓ with fewest migrations
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Character-Based Phylogeny Reconstruction: Criterion
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Parsimony: minimize number of changes on edges of tree



A Small and a Large Problem
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Small Maximum Parsimony Phylogeny Problem:
Given 𝑚 × 𝑛 matrix 𝐴 = [𝑎!,#] and tree 𝑇 with 𝑚 leaves, find 

assignment of character states to each internal vertex of 𝑇
with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given 𝑚 × 𝑛 matrix 𝐴 = [𝑎!,#], find a tree 𝑇 with 𝑚 leaves labeled 

according to 𝐴 and an assignment of character states to each internal 
vertex of 𝑇 with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?



Small Maximum Parsimony Phylogeny Problem
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Key observations: (1) Characters can be solved independently. 
(2) Optimal substructure in subtrees.



Recurrence for Small Maximum Parsimony Problem
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Small Maximum Parsimony Phylogeny Problem:
Given rooted tree 𝑇 whose leaves are labeled by 𝜎 ∶ 𝐿 𝑇 → Σ, find assignment 

of states to each internal vertex of 𝑇 with minimum parsimony score.



Recurrence for Small Maximum Parsimony Problem
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Let 𝜇(𝑣, 𝑠) be the minimum number of mutations in the subtree rooted at 𝑣
when assigning state 𝑠 to 𝑣.

Small Maximum Parsimony Phylogeny Problem:
Given rooted tree 𝑇 whose leaves are labeled by 𝜎 ∶ 𝐿 𝑇 → Σ, find assignment 

of states to each internal vertex of 𝑇 with minimum parsimony score.

Let 𝛿(𝑣) be the set of children of 𝑣.



Recurrence for Small Maximum Parsimony Problem
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Let 𝜇(𝑣, 𝑠) be the minimum number of mutations in the subtree rooted at 𝑣
when assigning state 𝑠 to 𝑣.

Small Maximum Parsimony Phylogeny Problem:
Given rooted tree 𝑇 whose leaves are labeled by 𝜎 ∶ 𝐿 𝑇 → Σ, find assignment 

of states to each internal vertex of 𝑇 with minimum parsimony score.

c(s, t) =

(
0, if s = t

1, if s 6= t,

µ(v, s) = min

8
><

>:

1, if v 2 L(T ) and s 6= �(v),

0, if v 2 L(T ) and s = �(v),
P

w2�(v) mint2⌃{c(s, t) + µ(w, t)}, if v 62 L(T ).

Let 𝛿(𝑣) be the set of children of 𝑣.



Filling out DP Table and Traceback
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Let 𝑟(𝑇) be the root vertex



Outline
• Metastasis
• Maximum parsimony
• Problem statement
• Complexity
• Algorithm & results
• Problem variants

Reading:
• M. El-Kebir, G. Satas and B.J. Raphael. Inferring parsimonious migration histories 

for metastatic cancers. Nature Genetics, 50:718-726, 2018.
• M. El-Kebir†. Parsimonious Migration History Problem: Complexity and Algorithms. 

WABI 2018, Helsinki, Finland, August 20-22, 2018.

23

Biological
question

Analyzing
complexity &
combinatorial

structure

Formulating a
combinatorial

problem

Designing an
algorithm

Interpreting
solutions and
validating the

algorithm

?

https://doi.org/10.1038/s41588-018-0106-z
https://doi.org/10.4230/LIPIcs.WABI.2018.24


Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics, 123(3), 603–613.
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Minimum Migration Analysis in Ovarian Cancer
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous 
ovarian cancer. Nature Genetics.
• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]
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Minimum Migration History is Not Unique
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• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †
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† Not necessarily true in the case of directed cycles
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• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †
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Figure 1: Taxonomy of migration patterns between anatomical sites. Migration patterns can be distinguished using two

different criteria. First, by the number of clones that migrate between two anatomical sites: with monoclonal (m) seeding, every

metastasis is seeded by a single clone , whereas with polyclonal (p) seeding, multiple clones migrate from one anatomical site to

another. Second, by the migration topology: with single-source seeding (S), every metastasis is seeded from a single anatomical

site with single-source seeding (S), with multi-source seeding (M), a metastasis may be seeded by multiple anatomic sites, and with

reseeding (R), clones migrate back and forth between anatomical sites, resulting in cycles of seeding. With m anatomical sites

µmin = m� 1 and �min = m� 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number �.
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Parsimonious Migration History (PMH): Given a phylogenetic tree 𝑇 and a set 𝒫 ⊆ S,M, R
of allowed migration patterns, find vertex labeling ℓ with minimum migration number 𝜇∗(𝑇)
and smallest comigration number ,𝛾(𝑇).

Constrained Multi-objective Optimization Problem

8
El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50(5), 718–726.
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Results [El-Kebir, WABI 2018]
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Theorem 1: PMH is NP-hard when 𝒫 = S

Theorem 2: PMH is fixed parameter 
tractable in the number 𝑚 of locations 
when 𝒫 = S

Parsimonious Migration History (PMH): Given a phylogenetic tree 𝑇 and a set 𝒫 ⊆ S,M, R
of allowed migration patterns, find vertex labeling ℓ with minimum migration number 𝜇∗(𝑇)
and smallest comigration number ,𝛾(𝑇).
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PMH is NP-hard when 𝒫 = S
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3-SAT: Given φ = ⋀!"#$ (𝑦!,# ∨ 𝑦!,& ∨ 𝑦!,')
with variables {𝑥#, … , 𝑥(} and 𝑘 clauses, 
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PMH is NP-hard when 𝒫 = S

Three ideas:
1. Ensure that 𝑥,¬𝑥 ∈ 𝐸(𝐺)

or ¬𝑥, 𝑥 ∈ 𝐸(𝐺)
2. Ensure that ℓ∗ 𝑟 𝑇 = ⊥
3. Ensure that φ is satisfiable if 

and only if ℓ∗ encodes a 
satisfying truth assignment
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Lemma: Let 𝐵 > 10𝑘 + 1 and 𝐴 > 2𝐵𝑛 + 27𝑘.
Then, φ is satisfiable if and only if 𝜇∗ 𝑇 = 𝐵 + 1 𝑛 + 25𝑘

PMH is NP-hard when 𝒫 = S

Three ideas:
1. Ensure that 𝑥,¬𝑥 ∈ 𝐸(𝐺)

or ¬𝑥, 𝑥 ∈ 𝐸(𝐺)
2. Ensure that ℓ∗ 𝑟 𝑇 = ⊥
3. Ensure that φ is satisfiable if 

and only if ℓ∗ encodes a 
satisfying truth assignment
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Lemma: Let 𝐵 > 10𝑘 + 1 and 𝐴 > 2𝐵𝑛 + 27𝑘.
Then, φ is satisfiable if and only if 𝜇∗ 𝑇 = 𝐵 + 1 𝑛 + 25𝑘
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PMH is NP-hard when 𝒫 = S
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Σ = {𝑥#, 𝑥&, 𝑥', ¬𝑥#, ¬𝑥&, ¬𝑥', 𝑐#, 𝑐&, ⊥}
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?
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3 3

✓

B + 5 B + 8 B + 5

9 11 9

φ = 𝑥# ∨ 𝑥& ∨ ¬𝑥' ∧ (¬𝑥#, ¬𝑥&, ¬𝑥')
𝑘 = 2, 𝑛 = 3

𝐵 = 10𝑘 + 2 = 22
𝐴 = 2𝐵𝑛 + 27k + 1 = 187

𝜇∗ 𝑇 = 𝐵 + 1 𝑛 + 25𝑘
= 23 ∗ 3 + 50 ∗ 2 = 119



Lemma: If (1) holds then ℓ∗ is a minimum migration labeling consistent with 7𝐺.

Lemma: If there exists labeling ℓ consistent with 7𝐺 then
dT (u, v) � dĜ(lcaĜ(u),

ˆ̀(v)) 8u, v 2 V (T ) such that u �T v. (1)

PMH is FPT in number 𝑚 of locations when 𝒫 = S
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v1 v2 v3 v4 v5 v6

u1

u2

u3 u4 u5

Vertex 
labeling   .

Leaf 
labeling  .̀̂ `⇤

v1 v2 v3 v4 v5 v6

u1

u2

u3 u4 u5

Phylogenetic tree T

O(nmm) 
time



Outline
• Metastasis
• Maximum parsimony
• Problem statement
• Complexity
• Algorithm & results
• Problem variants

Reading:
• M. El-Kebir, G. Satas and B.J. Raphael. Inferring parsimonious migration histories 

for metastatic cancers. Nature Genetics, 50:718-726, 2018.
• M. El-Kebir†. Parsimonious Migration History Problem: Complexity and Algorithms. 

WABI 2018, Helsinki, Finland, August 20-22, 2018.

40

Biological
question

Analyzing
complexity &
combinatorial

structure

Formulating a
combinatorial

problem

Designing an
algorithm

Interpreting
solutions and
validating the

algorithm

?

https://doi.org/10.1038/s41588-018-0106-z
https://doi.org/10.4230/LIPIcs.WABI.2018.24


Simulations
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Available on: https://github.com/elkebir-group/PMH-S
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Resolving Clone Tree Ambiguities
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Resolving Clone Tree Ambiguities
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Clone Tree Migration Graph
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Resolve clone tree ambiguities

Cell Division and
Mutation History

Cell Migration 
History

mutation

Standard Phylogenetic Techniques Sample TreeMutation Matrix

*homoplasy

mutations

0

@
1 0 1 0 1
1 1 0 1 0
1 1 1 0 0

1

A

sa
m

pl
es

P
M1
M2 P M1 M2

P

M1

M2

*
*

inferred extant clones

Sequencing and 
Mutation Calling

unobserved 
clones

Tumor 
Phylogenetic 
Techniques

MACHINA

Cellular History of Metastatic Cancer

tim
e

primary P metastasis M1metastasis M2

mutation

migration

migration



MACHINA accurately infers clone trees and migration 
histories on simulated data
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Applying MACHINA to Metastatic Breast Cancer
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Hoadley et al. 
Tumor Evolution in Two 
Patients with Basal-like 
Breast Cancer: A 
Retrospective 
Genomics Study of 
Multiple Metastases. 
PLOS Med, 13(12) 2016
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