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General Task

- The Goal is modeling the probability of different cancer evolution phylogenies. 
- Given a phylogeny tree, the model can determine the probability of that 

phylogeny tree. 
- For now, only SNVs are allowed in the phylogeny for simplicity, however, the 

same general method applies to very diverse phylogeny problems including 
CNAs, migrations, etc. 

- This can be used to determine the high probability trees from the set of 
possible phylogenetic trees. 

- This can also be used to directly understand the patterns in cancer evolution, 
including evolutionary pathways and the fitness effects of mutations. 



Precise Task

- The goal is to maximize the probability of seeing the data given of the model.
- Define P(T, M) as the probability of tree T given model parameters M.
- Let C_i be the set of phylogeny trees possible for patient i (and assume they 

all generate the data for patient i with equal probability).
- One therefore needs to maximize the below expression. 



The Model

- The model iteratively adds mutations to partially completed trees until the tree 
is complete. 

- Let there be M mutations in the data set. 
- Let T be a partially completed tree with N clones.
- Let C_i be an M dimensional vector where C_i[j] = 1 if clone i has mutation j, 

and C_i[j] = 0 otherwise. 
- Let f be a function that inputs and outputs M dimensional vectors. 
- The probability that mutation j occurs on clone i in the next 1 time unit is 

exp(f(C_i)[j]).
- Equivalently, the probability that the next mutation to occur is mutation j on 

clone i is softmax([f(C_1) | …| f(C_N)])[i, j]. 



The Model Part 2

- The probability of a tree T occurring is sum of the probability of all evolution 
processes that generate that tree.

- For example, the tree with edges (Root, A), (Root, B) could be generated in 
two ways: first having mutation A then mutation B, or first having mutation B 
then mutation A. 

- The probability of generating a tree can be optimized without directly knowing 
the probability of generating that tree by using reinforcement learning. 

- In fact, in cases where the patient has many many possible trees (for instance 
when bulk sequencing is used), the probability of generating a tree in that set 
can be optimized without even explicitly representing the set of trees. 



The Model Part 3

- The function f, which determines the probability of new mutations, is chosen 
to be a simple neural network with 2 layers and L hidden neurons. 

- Keeping L independent of the number of mutations, allows the number of 
parameters to only grow linearly in the number of mutations. 

- Therefore, this model is much more resistant to overfitting than many existing 
models.

- For example, a model with one parameter per possible tree edge has the 
number of parameters grow quadratically in M, and therefore has a higher risk 
of overfitting.



Some Technical Details of Two Training Methods

- The default reinforcement learning method is extremely efficient when there 
are very large number of possible trees per patient (even too many trees to 
explicitly enumerate, as long as there is a procedure to determine if a tree is 
possible). 

- However, the default reinforcement learning method sometimes has difficulty 
when only a tiny percentage of evolution processes generate possible trees 
(< 1 in 1,000,000). 

- In this case, one can modify the sampling procedure to only sample evolution 
processes that generate a given tree. One can then do this for every tree in 
the data set, and modify the reinforcement learning loss function to correct for 
this. 

- This slows down the training, but has no other downsides. 



Examples:

It converges to the optimal solution on all the below examples, and many more:

- P percentage of patients have the chain [1, 2, 3], and (1-P) are [3, 2, 1]
- All patients have the bulk frequencies [0.9, 0.4, 0.3], [0.9, 0.3, 0.4], which is 

only consistent with the tree [(Root, 1), (1, 2), (1, 3)].
- All patients have a chain [A, B], where A and B are chosen randomly from 

separate sets of 100 mutations (giving 10,000 possibilities), and there are 
only 1000 training data points (the solution is approximately optimal). 

- All patients have 10 mutations, 9 of which are made on the root, but one is 
randomly chosen to be added to an already mutated clone. 

- One third of patients have each of the bulk frequency measurements [0.9, 0.8, 
0.7], [0.3, 0.2, 0.1], [0.1, 0.2, 0.3], with the optimal solution of 50% the tree 
[(Root, 1), (Root, 2), (Root, 3)] and 50% the chain [1, 2, 3].  



RECAP simulated data
- The model should be flexible enough to apply to tasks outside the domain of task 

which it was designed for. Therefore, I tested it on the simulated data from the 
RECAP paper from professor El-Kebir’s research. 

- In these data sets, a small number of true trees were generated, and each patient is 
assigned one of these true trees.

- Then, each patient has bulk sequencing simulated, generating many possible trees. 
- The task is to predict the true tree from the set of possible trees.
- This process does not follow the realistic assumptions of our model (for instance, it 

is unrealistic to have the trees [(Root, A), (A, B), (A, C)] and [(Root, A), (Root, B), 
(Root, C)] but never [(Root, A), (A, B), (Root, C)]).

- Our model is not designed for clustering (where one knows a priori there are a small 
number of unique true trees), and must be made compatible with this. 



RECAP simulated data details

- There are two groups of data sets I used, one with 5 mutations in total and 5 
mutations per patient, and one with 12 mutations total and 7 mutations per 
patient. 

- Each of these groups of data sets has 200 individual data sets.
- The individual data sets have between 1 and 5 clusters (unique true trees).
- They also have either 50 or 100 patients.



Adapting for Clustering

- The predictions of our model need to be adapted to the knowledge that there 
is only a small number of unique true trees (clusters).

- Let T be a list of trees predicted for each patient, and let P(T) be the 
probability the model assigns to all of these trees being chosen. 

- Define S(T) as the list of unique trees in T.
- Initialize T as the list of trees that maximize P(T).
- Define T_i as the list of trees that maximize P(T_i), with S(T_i) = S(T) - S(T)[i] 
- Set T to the T_i that maximizes P(T_i), and repeat the previous step.
- Continue until it is impossible to continue since eliminating an additional tree 

would eliminate all possible trees for some patient. 



Results: 5 Mutations accuracy

- The plot has a dot for every 
data set.

- The y axis is prediction 
accuracy, and the x axis is 
number of clusters.

- RECAP and my method both 
have an accuracy of 98.6%. 



Results: 12 Mutations accuracy.

- RECAP has almost 100% 
accuracy, and my method has 
exactly 100% accuracy. 

- RECAP has a few incorrect 
predictions when the cluster 
size is 5.



Predicted Cluster Number

- RECAP almost always predicts the correct number of clusters. My method 
identifies the correct clusters 100% of the time. 



Real Data

- I manually transcribed 111 trees for 77 patients from the data in “Clonal 
Evolution of Acute Myeloid Leukemia Revealed by High-Throughput 
Single-Cell Genomics”

- There are typically less than 10 mutations per patient, and often less than 5.



Real Data: Co-occurence Patterns
- The plot shows the probability of each 

mutation on a clone that has exactly one 
mutation. 

- The Y axis is the existing mutation and the X 
axis is the new mutation.

- Two of the new mutations have very high 
probabilities for many clones.

- There is a clear pattern of some driver 
mutations causing other mutations.

- The pattern is very asymmetric. Mutation A 
causing mutation B does not imply mutation 
B causes mutation A.



Cancer fitness

- The relative fitness of a tumor can be 
defined by the probability that if a 
mutation occurs, it will occur on that 
clone. 

- The plot shows the relative fitness of 
all of the tumors which only contain 
one mutation.  

- 5 of the clones are much more fit 
than all of the other clones 
combined. Those mutations are 
likely very adaptive. 



Low Dimensional Representations

- The model creates low dimensional 
internal representations of the clones.

- The plot shows the 5 dimensional 
representation of all of the clones with 
exactly one mutation. 

- The clones are sorted by the first 
dimension of the representation.

- As one can see, around half of the 
mutations are similar/unimportant.

- This representation can be used for 
many different cancer related tasks.



Conclusion

- In conclusion, this modern has many desirable properties. 
- It is flexible, resistant to overfitting, uses realistic assumptions, performs very 

well on simulated data, is interpretable, detects a variety of interesting 
patterns, and creates potentially useful low dimensional representations.

- There are two main directions for future work:
- 1. Better utilizing the predictions of the model.
- 2. Expanding the model to account for more complex evolutionary behavior 

such as CNAs. 





Technical detail 1:

- The actual optimization for this problem is done using the below gradient.



Technical detail 2:

- In reinforcement learning, typically the model assigned probability and the 
sample probability are assumed to be the case. However, it doesn’t have to 
be if one is careful about the difference (note: negative sign dropped for 
simplicity)



Technical detail 3:

- It is unrealistic to have the first two trees but not the third. 
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