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Motivation

With the interest in determining the sequence of alleles on each specific chromosome

solve Haplotype phasing for polyploid genomes.




Keyword Definitions

“The polyploid cell or organism has three or more times the haploid chromosome number.”[2]




Keyword Definitions

“Haplotype estimation (also known as "phasing”
of haplotypes from genotype data.”[3]

refers to the process of statistical estimation

MEC Score: “Minimum error correction(MEC) is a prominent computational problem for

haplotype assembly and, given a set of fragments, aims at reconstructing the two haplotypes
by applying the minimum number of base corrections.”[4]




Problem Formulation

Ris the set of all reads that align to a chromosome
m is the number of variants in our chromosome.
every read r_i is an element of the spaceri € {-,0, 1, 2, 3}

r_i [j] is the jth coordinate of r_i, r_i [j| € {0, 1, 2, 3} if the jth variant is
contained in the read ri where 0 represents the reference allele, 1
represents the first alternative allele, and so forth. ri [j] = - if ri does not
contain the jth allele.




Problem Formulation

For any two reads r1, r2 : d and s represents the number of different and same

s(ri,r2) = [{k : (k] = r2[k], (r1[k] # =) A (r2]k] # =)}

d(r1,72) = [{k : r1[k] # r2[k], (r1[k] # —) A (r2[k] # —)}




Problem Formulation

Define the consensus haplotype H(R;) € {—,0,1,2,3}™ associated to a subset of reads as follows. For
all indices [ = 1,...,m let H(R;)[l] = argmax, |{r € Ri : r[l] = a}| and break ties according to some
arbitrary order. If only — appear at position [ over all reads, we take H(R;)[l] = —. It is easy to check that
H(R;) is a sequence in {—,0,1,2,3}™ such that H(R;)[k] # — at indices for which some read overlaps, and
Y rer, d(H(R;),r) is minimized.

In our formalism, we can phrase the MEC model of haplotype phasing as the task of finding a partition
{Ry,...,Ri} of R such that

k
Z Z d(rja H(R‘))

i=l r;€ER;




Problem Formulation

Min-sum max tree partition (MSMTP) model. Let G(R) = (R, E,w) be an undirected graph where
the vertices are R and edges E are present between two reads ry,rs if 71,79 overlap, i.e. d(ry, ra)+s(ry,r2) > 0.
Let the weight of e = (r1,r3) be w(e) = w(ry, ry) for some weight function w. We call G(R) the read-graph;
a similar notion is found in [17,18,19,26,27).

For a partition of R into disjoint subsets {Ry,..., Ri} we take G(R;) as defined above. We only consider
partitions of vertices such that all G(R;) are connected, which we will denote as valid partitions. Let M ST(G)
be the maximum spanning tree of a graph G. Define

SMTPE(R;, .. Z Z w(e). (1)

i=1 ee MST(G(R;))

We formulate the min-sum maz tree partition (MSMTP) problem as finding a valid partition {Ry, ..., Rk}
of R such that SMTPJ(R,, ..., Ry) is minimized.

The MSMTP problem falls under a class of problems called graph tree partition problems [28], most of
which are NP-Hard. We give a proof that MSMTP is NP-Hard in Appendix A.

Intuitively, assuming each G(R;) is connected, a maximum spanning tree is a maximum measure of
discordance along the entire haplotype. We prove below that under a specific constraint on the read-graph,
the SMTP score for w(ry,r2) = d(r1,r2) is an upper bound for the MEC score.




Problem Formulation

Let € represent the probability that a variant is called incorrectly. Let o € R be a normalizing constant,
and X; ~ Binomial([(D(R;) + S(R;))/c]| .€) be a binomial random variable. Then

UPEMg(R,... Rk)_ng [Pr (x > [S(Rﬂ D] +logh2(Rl, ... | Rel)]

i=1

The x?(xy,...,z,) term is the p-value for the x? test while the binomial term is a sum of log one-sided
binomial tests where the null hypothesis is that the error rate of a clustering is e. Therefore the UPEM score
is just a sum of log p-values.
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MSMTP Algorithm

Algorithm 1: Greedy min-max read partitioning

Input : Read-graph G(S), ploidy k, iterations n
Output: A partition {Sy,...,Sk} of S

1 {v1,..., v} +FindMaxClique(G(S), k)

2 fori=1tokdo

3 | Si +{vi}

4 end

5 fori=1 ton do

6 | VeG(9)\UL S

7 Reverse-sort V' by assigning to v € V' the value v — ming, ¢ (s,

s | VeVl

9 for v in V do

s} Maxres; s(r,v) +d(r,v)

.....

10 S" + argming, max,cs, w(v,r)
11 S’ S'u {v}

12 end

13 end

14 Return {S1,...,Sk}




[terative refinement of local clusters:

The algorithm checks how moving reads from one partition to another partition
changes the UPEM score for every read.

stores the best moves and execute a fraction of them.
Proceed for n iterations or until the UPEM score does not improve anymore.

Local phasing procedure:

Local phasing procedure Note that Algorithms 1 and 2 work on subsets of reads or subgraphs of the
underlying read-graph. Let b € N be a constant representing the length of a local block. We consider subsets
Bl,...,Bz C R where

Bi ={re R:3j,b(i — 1) <j <b(@),r[j] # -}

The subsets are just all reads that overlap a shifted interval of size b, similar to the work done in [31]. After
choosing a suitable b, we run the read-partitioning and iterative refinement on all By,..., B; to generate a
set of partitions P, ..., ;. We found that a suitable value of b is the Z—quantile value of read lengths. By
read length we mean the last non '—’ position minus the first non '—’ position of r € {0,1,2,3, —}.
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Results and Discussion

They have used three metrics to compare the results:
Hamming error rate.
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g-block error rate : 5x ploidy, 10x coverage
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