Copy number evolution with weighted aberrations in cancer

Ron Zeira and Benjamin J. Raphael

Presented by Mrinmoy
Copy number aberrations (CNAs)

- Deletion or amplification of large genomic regions
- Source of somatic mutation in many cancer types
CNPs and Events

- Copy number profile, $C = (c_1, c_2, \ldots, c_n)$
 Vector of non-negative integers

- Events, $e = (i, j, \tau)$,
 $1 \leq i \leq j \leq n$, $\tau \in \{+1, -1\}$
CNPs and Events

<table>
<thead>
<tr>
<th>c_0</th>
<th>...</th>
<th>c_{i-1}</th>
<th>c_i</th>
<th>...</th>
<th>c_j</th>
<th>c_{j+1}</th>
<th>...</th>
<th>c_n</th>
</tr>
</thead>
</table>

\[
\text{(i, j, } \tau) \text{ }
\]

| c_0 | ... | c_{i-1} | max($C_{i+\tau}$, 0) | ... | max(c_j + τ, 0) | c_{j+1} | ... | c_n |
CNT & CND

- Copy number transformation from CNP S to CNP T:
 \[E = (e_1, e_2, \ldots, e_l) \]
 such that \(e_l(...(e_1(S)) = T \)

- Copy Number Distance, \(d(S,T) = \min\{E:E(S)=T\} |E| \)
- CNT is not a true distance
- \(d(S,T) = \infty \) if \(s_i = 0 \) for any \(1 \leq i \leq n \)
Phase

- **E** = \((E_1, E_2, \ldots, E_n)\)

Phase - \(E_i\) where (1) \(E_i\) is a subsequence of \(E\), (2) all the events in \(E_i\) has the same type, and (3) adjacent segments have different types.

- \(\text{op}(E_j, i) = \mid \{(l, r, \tau) \in E_j \mid l \leq i \leq r\} \mid\)

 Change in segment \(i\) by events in phase \(E_j\)

- CNT \(E\) from \(S\) to \(T\) is **phase-bounded** provided if -

 \(\text{op}(E_j, i) \leq B\) where \(B = \max(\max(S), \max(T))\)
Ordered CNT

- Ordered CNT, $E = (E_-, E_+)$

 All deletions come before all amplifications

- If $d(S, T) < \infty$, then there exists an ordered phase-bounded CNT E s.t. $E(S) = T$
Semi-ordered CNT

- Which one is more probable?
Semi-ordered CNT:

- Semi-ordered CNT:
 \[E = (E_1, E_2, E_3) \]
 s.t. \(\tau(E_1 U E_3) = -1, \tau(E_2) = +1 \)
 and \(E_1(S_i) = 0 \) if \(t_i = 0 \)

- Why?
 - Richer space of transformations
 - Still tractable
Problems with CND

CND considers all events equally.

Problems -

- CNAs of different length occurs at different rates
- Length dependent uncertainty in real data
Weighted CNT Model

- Event weight function, \(w: \{1..n\} \times \{1...n\} \times \{+,-\} \rightarrow R \)
 - Takes as input an event \(e \), and outputs its weight
- Weight can change based on position, length and type of CNA
- Weight of CNT \(E \):
 \[
 w(E) = \sum_{e \in E} w(e)
 \]
Weighted CNT Model
Minimum weight semi-ordered CNT

- **Problem Statement:** Given a source CNP S, a target CNP T and a weight function w, find semi-ordered phase-bounded CNT E having a minimum weight $W(E)$.

- If the weight of an event is the log of the probability of the event, then the problem becomes a Maximum Likelihood problem.

$$E = \min\{E : E(S) = T \mid E \text{ is semi-ordered & phase bounded}\}(- \sum_{e \in E} \log p_e)$$
$x_{lk}^j = \text{Number of events between } l \text{ and } k \text{ in phase } j$

Objective function - \[\min \sum_j \sum_{l \leq k} w(l, k, j)x_{lk}^j \]

Constraints - \[s_i \leq \sum_{l \leq i \leq k} x_{lk}^1 \quad 1 \leq i \leq n, \text{ if } t_i = 0, \]

\[\sum_{l \leq i \leq k} x_{lk}^1 \leq s_i - 1 \quad 1 \leq i \leq n, \text{ if } t_i > 0, \]

\[s_i - \sum_{l \leq i \leq k} x_{lk}^1 + x_{lk}^2 + x_{lk}^3 = t_i \quad 1 \leq i \leq n, \text{ if } t_i > 0 \]
Minimum weight semi-ordered CNT Solution

Constraints -

\[s_i - \sum_{l \leq i \leq k} x_{lk}^1 - x_{lk}^2 + x_{lk}^3 = t_i \quad 1 \leq i \leq n, \quad \text{if} \quad t_i > 0, \]

\[\sum_{l \leq i \leq k} x_{lk}^j \leq B \quad 1 \leq i \leq n, \quad j \in \{1, 2, 3\} \]

\[0 \leq x_{lk}^j \quad 1 \leq l \leq k \leq n, \quad j \in \{1, 2, 3\}. \]
Results on simulated data
Results on real data