

MEDICC2

Minhyuk Park

3/25/21

Citation

2

- Petkovic, M., Watkins, T., et al. Whole-genome doubling-aware copy number phylogenies for cancer evolution with MEDICC2 (preprint)
- Schwarz RF, Trinh A, Sipos B, Brenton JD, Goldman N, et al. (2014) Phylogenetic Quantification of Intra-tumour Heterogeneity. PLOS Computational Biology 10(4): e1003535. https://doi.org/10.1371/journal.pcbi.1003535

- Copy Number Aberration (CNA):
 - Gains and losses of segments of the genome
 - Cancer evolutionary process
- Whole Genome Doubling (WGD):
 - The entire genome being duplicated
 - Can lead to tetraploidy (start from diploid and double to tetraploid)
- These come about as part of the evolutionary process of cancer genomes:
 - They contain signal about cancer phylogeny

Given two Copy Number Profiles (CNP), get the number of gains and losses on arbitrary lengths of segments to transform one CNP to another

Input:

- Set of copy number profiles
- Output:
 - Tree topology, internal node copy number profiles, and branch lengths
- Optimizing for:
 - Minimum Event Distance under Whole Genome Doubling

- No methods so far that could infer phylogeny from genomes that include WGD event:
 - Distinguishing between WGD events and multiple gain/loss is hard
 - No evolutionary model exists that identify WGD events in cancer phylogeny
 - MEDICC was limited to arbitrary lengths and not whole genomes
- MEDICC2:
 - Minimum Event Distance for Intra-tumor Copy-number Comparisons
 - Explicitly models clonal/subclonal WGD events

MEDICC2 Overview

7

- Start with a set of Copy Number Profiles (CNP)
- Get a minimum event distance matrix on all pairs of the input genome
- Neighbor Joining on the distance matrix to get a tree
- Infer ancestral CNPs on the internal nodes
- Assign branch lengths using minimum evolution distance of each parent and child clade

- Finite State Machine that has:
 - A read tape
 - A write tape
- To solve mimimum event distance:
 - Input and output alphabet are copy numbers
 - Internal states and their transitions represent all possible transformations from input to output

9

- Using a finite-state transducer with input and outputs being the copy numbers:
 - Let's call this T[x,y] where x is the input sequence and y is the output sequence
 - Composition of gets us sequential events
- $T_{MED-WGD} = T_{LOH} \circ T_{WGD} \circ T_L \circ T_G$
 - We know that all the loss of heterozygosity events can be considered first
 - WGD should be considered right away to reduce non-determinism
 - Then all the losses
 - Then all the gains
 - Getting the shortest distance through T_{MED-WGD}[x, y] should give us the minimum event distance accounting for whole genome doubling from x to y

Runtime Comparison on Simulated Data

- The authors implemented a lazy computation of shortest distance through the finite-state transducers
- Notice how much faster the lazy version is compared to the original legacy version

Accuracy Comparison on Simulated Data

- This is on simulated data with WGD
- Left takes into account WGD while the right does not
- Not taking into account WGD makes MEDICC2 overestimate the true distances

Classification Comparison on Biological Data I

- PCAWG is the published golden standard
- MEDICC2 is not a classifier:
 - Take the difference of scores between the MED while ignoring WGD and MED while accounting for WGD
 - If this difference is high, then there must have been WGD

	MEDICC	
PCAWG	no WGD	WGD
no WGD	1937	23
WGD	8	810

- PCAWG is the published golden standard
- MEDICC2 is not a classifier:
 - Take the difference of scores between the MED while ignoring WGD and MED while accounting for WGD
 - If this difference is high, then there must have been WGD

Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN