
Background

- Copy Number Aberration (CNA):
 - Gains and losses of segments of the genome
 - Cancer evolutionary process

- Whole Genome Doubling (WGD):
 - The entire genome being duplicated
 - Can lead to tetraploidy (start from diploid and double to tetraploid)

- These come about as part of the evolutionary process of cancer genomes:
 - They contain signal about cancer phylogeny
Minimum Event Distance Problem (MED)

- Given two Copy Number Profiles (CNP), get the number of gains and losses on arbitrary lengths of segments to transform one CNP to another
Problem Statement

- **Input:**
 - Set of copy number profiles

- **Output:**
 - Tree topology, internal node copy number profiles, and branch lengths

- **Optimizing for:**
 - Minimum Event Distance under Whole Genome Doubling
No methods so far that could infer phylogeny from genomes that include WGD event:

- Distinguishing between WGD events and multiple gain/loss is hard
- No evolutionary model exists that identify WGD events in cancer phylogeny
- MEDICC was limited to arbitrary lengths and not whole genomes

MEDICC2:
- Minimum Event Distance for Intra-tumor Copy-number Comparisons
- Explicitly models clonal/subclonal WGD events
MEDICCC2 Overview

- Start with a set of Copy Number Profiles (CNP)
- Get a minimum event distance matrix on all pairs of the input genome
- Neighbor Joining on the distance matrix to get a tree
- Infer ancestral CNPs on the internal nodes
- Assign branch lengths using minimum evolution distance of each parent and child clade
Finite-State Transducer

- Finite State Machine that has:
 - A read tape
 - A write tape

- To solve mimimum event distance:
 - Input and output alphabet are copy numbers
 - Internal states and their transitions represent all possible transformations from input to output
Using a finite-state transducer with input and outputs being the copy numbers:

- Let’s call this $T[x,y]$ where x is the input sequence and y is the output sequence
- Composition of gets us sequential events

$$T_{MED-WGD} = T_{LOH} \circ T_{WGD} \circ T_L \circ T_G$$

- We know that all the loss of heterozygosity events can be considered first
- WGD should be considered right away to reduce non-determinism
- Then all the losses
- Then all the gains
- Getting the shortest distance through $T_{MED-WGD}[x,y]$ should give us the minimum event distance accounting for whole genome doubling from x to y
The authors implemented a lazy computation of shortest distance through the finite-state transducers.

Notice how much faster the lazy version is compared to the original legacy version.
Accuracy Comparison on Simulated Data

- This is on simulated data with WGD
- Left takes into account WGD while the right does not
- Not taking into account WGD makes MEDICC2 overestimate the true distances
- PCAWG is the published golden standard
- MEDICCC2 is not a classifier:
 - Take the difference of scores between the MED while ignoring WGD and MED while accounting for WGD
 - If this difference is high, then there must have been WGD
Classification Comparison on Biological Data II

<table>
<thead>
<tr>
<th></th>
<th>MEDICCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAWG</td>
<td>no WGD</td>
</tr>
<tr>
<td>no WGD</td>
<td>1937</td>
</tr>
<tr>
<td>WGD</td>
<td>8</td>
</tr>
</tbody>
</table>

- PCAWG is the published golden standard
- MEDICCC2 is not a classifier:
 - Take the difference of scores between the MED while ignoring WGD and MED while accounting for WGD
 - If this difference is high, then there must have been WGD