Epiclomal

Probabilistic Clustering of Sparse DNA Methylation Data

Motivation

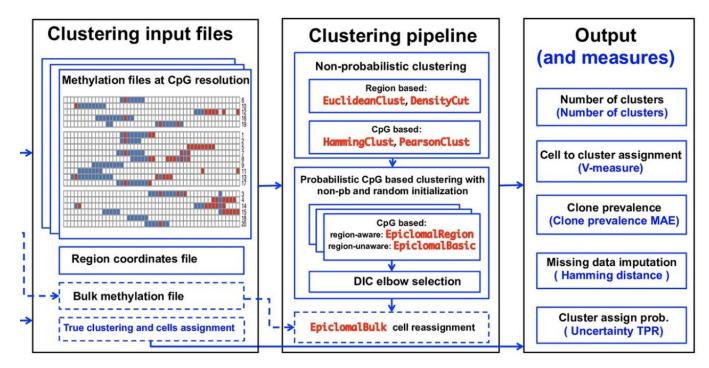
- DNA methylation at 5mC position is important for transcriptional regulation
- Single-cell whole-genome bisulfite sequencing (sc-WGBS) can assess epigenetic diversity of a cell population
- Data is sparse (lots of missing CpG sites) and subject to error
- Need for clustering according to methylation profiles
 - Identification of cancer subtypes
 - Detection of previously unknown cell types, deeper characterization of known ones
 - Imputation of missing CpG data by pooling information across clusters

Previous Work

- A number of non-probabilistic clustering methods for CpG methylation data
 - Hou et al., Farlik et al., others
- Probabilistic approaches to imputation of missing CpG data
 - Kapourani and Sanguinetti, Angermuller et al.
- Until now: no probabilistic method with a focus on clustering based on methylation profiles
- Authors want to simultaneously cluster sc-WGBS data while inferring the missing methylation states

Epiclomal

• Goal: cluster sparse CpG-based DNA methylation data from sc-WGBS

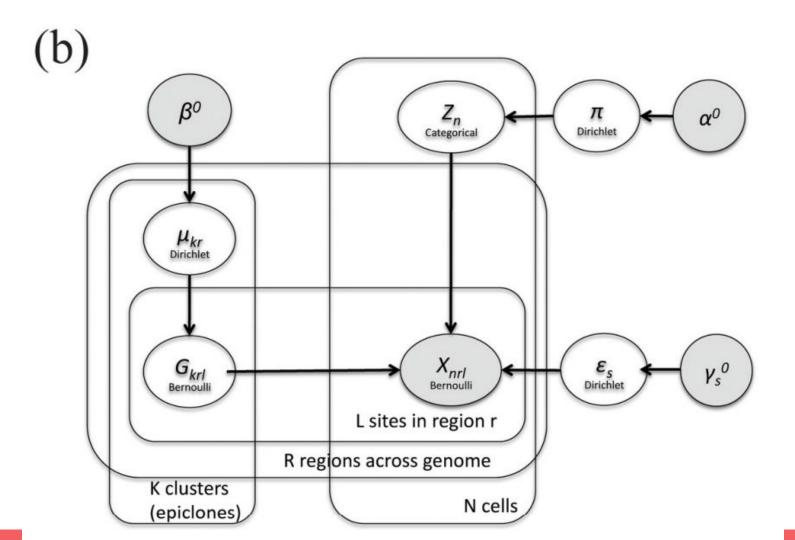


Input

- sparse matrix of *N* rows (cells) and *M* columns (CpG sites)
- each entry is 0 (unmethylated), 1 (methylated), or missing
- partially methylated sites: 1 if methylation fraction is at least 0.5, 0 otherwise
 - median < 1.35% across datasets
- optional: select specific regions
 - EpiclomalBasic vs. EpiclomalRegion

Methods: Non-Probabilistic Methods

- Performance comparisons
- Cluster initialization
- Region-based: EuclideanClust, DensityCut
 - Based on mean methylation for each region
 - DensityCut also infers the optimal number of clusters
- CpG-based: HammingClust, PearsonClust
 - $\circ \quad \ \ \mathsf{Based} \text{ on methylation of individual CpG sites}$
- Epiclomal considers each potential number of clusters up to a chosen K
 - Infers optimal number of clusters (at most *K*)



Let $\mathbf{X}_{nr} = (X_{nr1}, \dots, X_{nrL_r})^T$ be the vector of observed data for region *r* in cell *n*, and let $\mathbf{X}_n = (\mathbf{X}_{nr}^T, \dots, \mathbf{X}_{nR}^T)^T$ be the vector of all observed data for cell *n*. Assume that $X_{nr1}, \dots, X_{nrL_r}$ are independent for all *n* and *r*. Suppose that there are $K \ll N$ vectors of true hidden methylation states shared across the cells. Let Z_n with values in $\{1, \ldots, K\}$ be the hidden variable indicating the true cluster (epiclonal) population of cell n. It is assumed that Z_1, \ldots, Z_N are independent with $P(Z_n = k) = \pi_k$ such that $\sum_{k=1}^{K} \pi_k = 1$. If $Z_n = k$, then the distribution of \mathbf{X}_n depends on the *k*-th vector of true hidden epigenotypes $\mathbf{G}_k = (\mathbf{G}_{k_1}^T, \dots, \mathbf{G}_{k_p}^T)^T$, where $\mathbf{G}_{kr} = (G_{kr1}, \ldots, G_{krL_r})^T$. We assume that $G_{kr1}, \ldots, G_{krL_r}$ are independent for all k and r, with $P(G_{krl} = s) = \mu_{krs}$ such that $\sum_{s \in S} \mu_{krs} = 1$, that is, G_{krl} follows a categorical (Bernoulli) distribution with parameter set $\mu_{kr} = \{\mu_{krs} : s \in S\}$. Therefore, given the true cluster assignment and the corresponding true hidden methylation states, the observed data X_{nr} are independent, with X_{nrl} following a categorical distribution with parameters depending on the hidden true state at locus *l* of region *r* for cluster population *k*, that is,

$$P(X_{nrl} = t | Z_n = k, G_{krl} = s) = \epsilon_{st} \text{ with } \sum_{t \in S} \epsilon_{st} = 1.$$
(1)

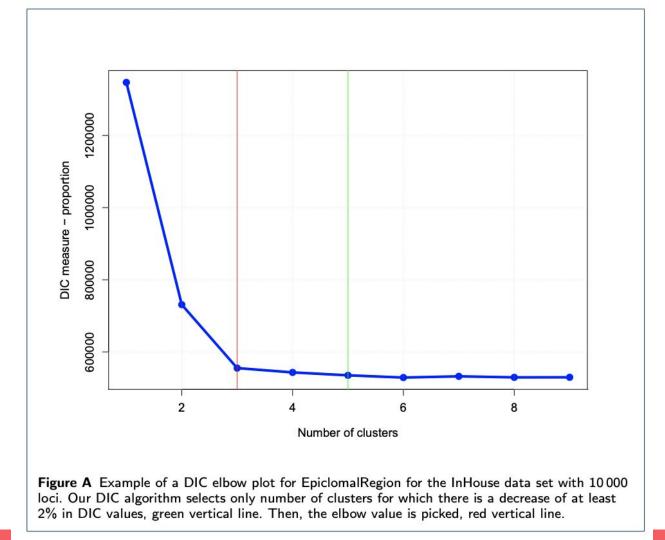
We can also interpret the probability in (1) as a misclassification error, which in this context is related to sequencing error.

To infer Θ and the hidden states $\mathbf{Z} = (Z_1, \dots, Z_n)^T$ and $\mathbf{G} = \{\mathbf{G}_1, \dots, \mathbf{G}_K\}$, we adopt a Bayesian approach and derive a Variational Bayes (VB) algorithm [33] to approximate the posterior distribution of Θ , \mathbf{Z} , and \mathbf{G} given the observed data $\mathbf{X} = \{\mathbf{X}_1, \dots, \mathbf{X}_N\}$, $P(\mathbf{Z}, \mathbf{G}, \Theta | \mathbf{X})$ by finding the Variational Distribution (VD), $q(\mathbf{Z}, \mathbf{G}, \Theta)$ with the smallest Kullback-Leibler divergence to the posterior $P(\mathbf{Z}, \mathbf{G}, \Theta | \mathbf{X})$, which is equivalent to maximizing the evidence lower bound (ELBO) given by

$$ELBO(q) = E[\log P(\mathbf{X}, \mathbf{Z}, \mathbf{G}, \Theta)] - E[\log q(\mathbf{Z}, \mathbf{G}, \Theta)].$$
(2)

Methods (cont.)

- ELBO is non-convex optimization susceptible to local optimum
- ran VB algorithm *T* times (1000 for real data sets, 300 for synthetic data)
- started from different initial cluster assignments for each cell
- K = 10 for all runs (considers 1, 2,..., 10 clusters)
- 10 initializations each from EuclidClust, HammingClust, PearsonClust 1 from DensityCut
- The rest (T 31) of the initializations are uniformly random
- Selecting the best run
 - Minimum DIC score over runs with c clusters
 - \circ ~ DIC elbow plot to select optimal number of clusters, best overall run

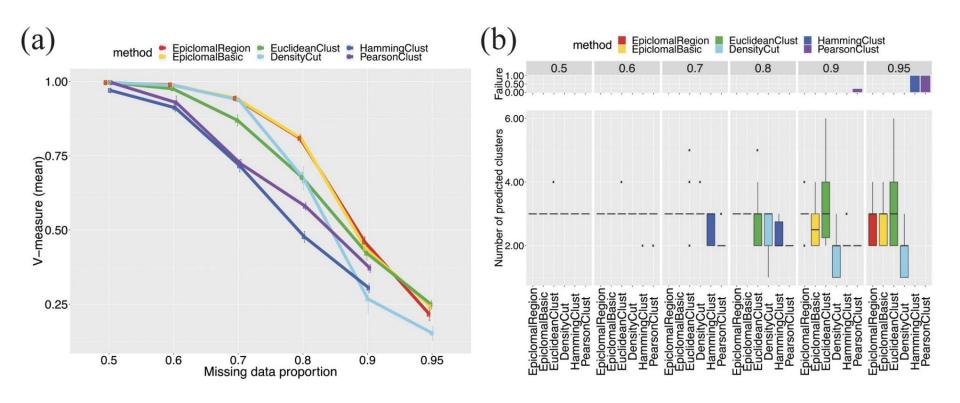


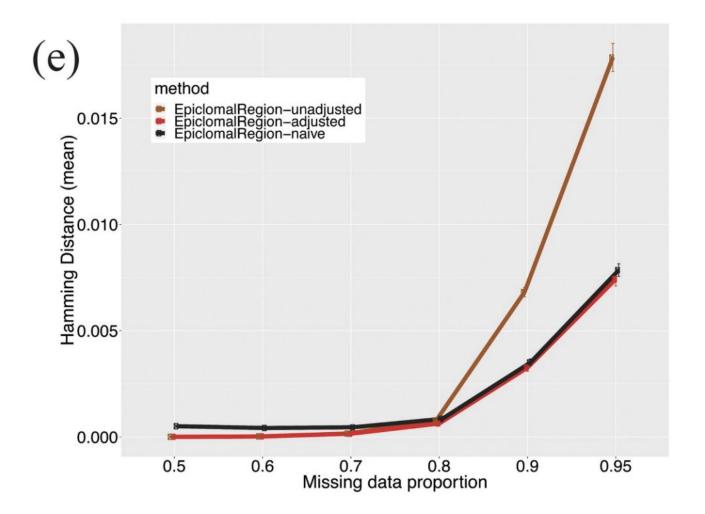
Results

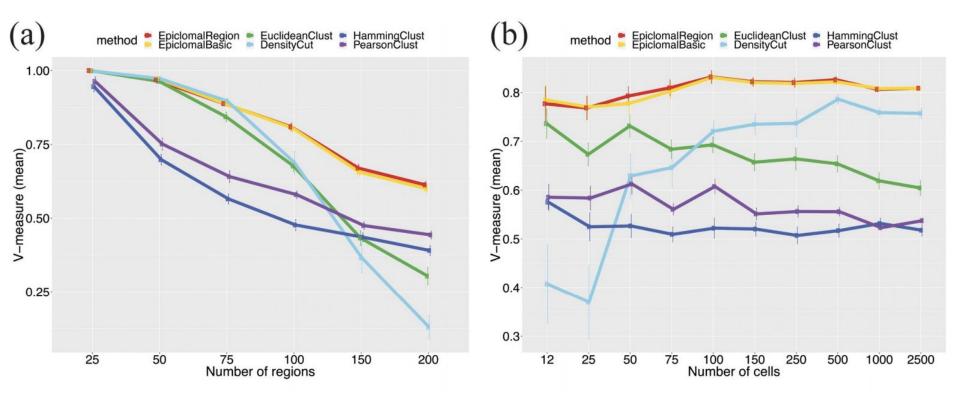
- V-measure is calculated as the harmonic mean between homogeneity (h) and completeness (c)
 - A predicted clustering has homogeneity 1 if all of the predicted clusters contain only data points which are members of a single true class.
 - A predicted clustering result has completeness 1 if it assigns all of those data points that are members of a single true class to a single predicted cluster.

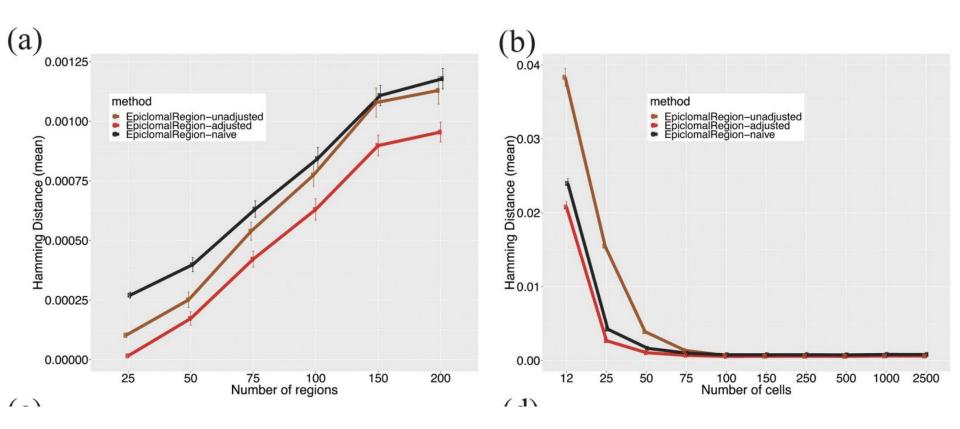
Parameters Missing probability Number of cells Number of loci 	 Number of clones Clone prevalence Number of regions Cell to cell variability 	->	Random sampling based on a phylogenetic tree	

Varying parameter	Varying range		
Missing proportion	0.5 to 0.95		
Number of regions	25 to 200		
Number of cells	12 to 2500		
Cell-to-cell variability	0 to 0.3		
Number of clusters (epiclones)	1 to 10		
Epiclone frequencies	balanced to very unbalanced		
Number of loci	5 000 to 500 000		
Number of regions different between clusters	1 to 6		

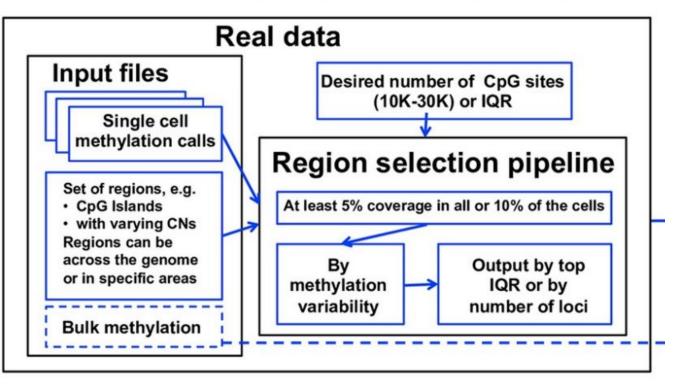


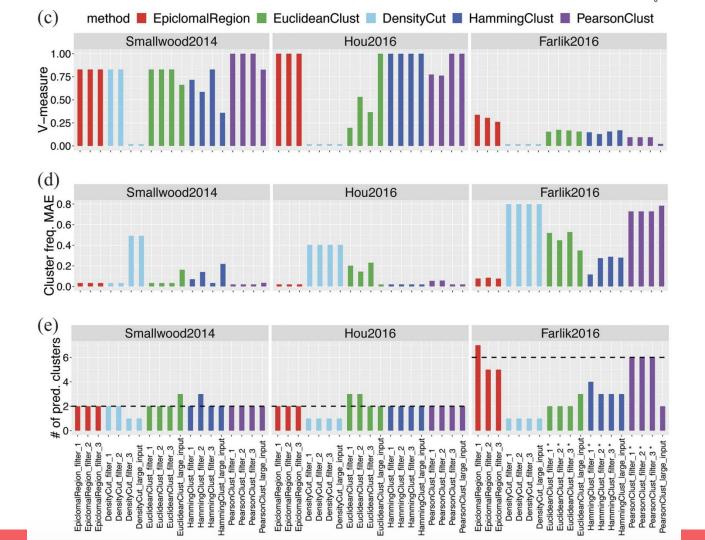


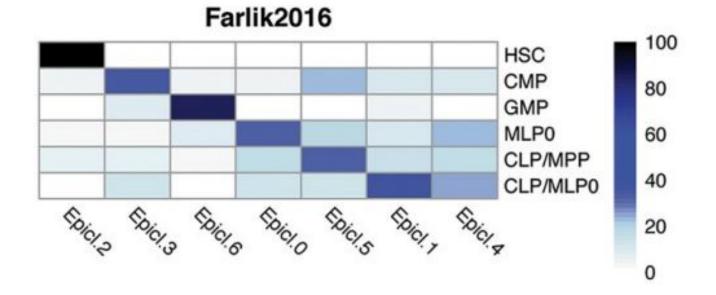




Data set	Cell type	# cells	# clusters	Regions	Miss 10K	Nloci IQR \geq .01	Miss IQR \ge .01
Smallwood2014 [16]	mouse embryonic stem cells	32	2	CGI	0.69	786 620	0.54
Hou2016 [11]	human hepatocellular carcinomas	25	2	CGI	0.87	255 136	0.90
Farlik2016 [12]	human hematopoietic cells	122	6	TFBS	0.89	512 153	0.98
InHouse human xenografted cancer cells (3 patients)		558	NA	CGI	0.82	1 019 956	0.79

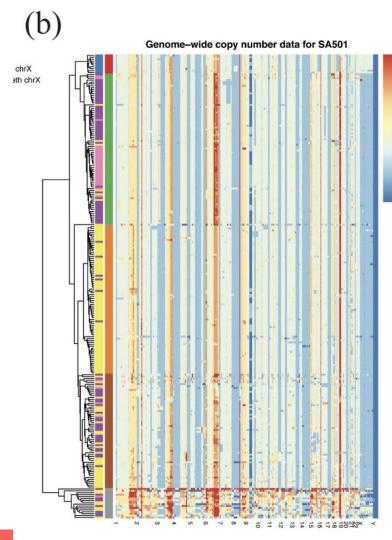


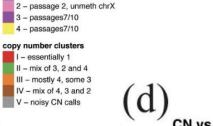




InHouse Data

- Single-cell epigenomes generated in-house on a range of patient-derived breast tumour xenografts
- 2 patients with triple-negative breast cancer, 1 with ER+PR-Her2+ breast cancer
- For one patient: compare epiclone clusters with copy-number clones
- Some chromosomal regions may show strong copy-number influence on CpG states (X chromosome), while others may not
- Epiclones and CN clones can match or transcend each other





⁵ methylation clusters

3

2

1

0

1 - passage 2, meth chrX

CN vs. methylation clusters

