CS 598MEB Introduction to Bioinformatics Lecture 6

Mohammed El-Kebir

February 6, 2020

Outline

- Multi-State Perfect Phylogeny
- Tumor Phylogeny Inference from Single-cell DNA-seq

Reading:

- Lecture notes
- M. El-Kebir. SPhyR: Tumor Phylogeny Estimation from Single-Cell Sequencing Data under Loss and Error. <u>Bioinformatics (ECCB 2018), 34(17):i671-679,</u> <u>2018</u>.

Infinite Sites Model = Two-state Perfect Phylogeny

Infinite Alleles Model = Multi-state Perfect Phylogeny

Infinite alleles model:

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Site History: Time Characters have integer states

Infinite Alleles Model = Multi-state Perfect Phylogeny

Infinite alleles model:

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Characters have integer states

Infinite Alleles Model = Multi-state Perfect Phylogeny

Infinite alleles model:

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Characters have integer states

Multi-state Perfect Phylogeny

Matrix $M \in \{0, \dots, k-1\}^{n \times m}$ has *n* taxa and *m* characters

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \ldots, k-1\}^m$
- Solution Nodes labeled with state *i* for character *c* form a connected subtree $T_c(i)$

Theorem (Bodlaender et al., 1992) [Bodlaender, Fellows and Warnow] For general k, the multi-state perfect phylogeny problem is NP-complete

Cladistic vs. Qualitative Characters

Definition

A multi-state perfect phylogeny for *M* is a tree *T* with *n* leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \ldots, k-1\}^m$
- 3 Nodes with state *i* for character *c* form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c

Cladistic vs. Qualitative Characters

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \ldots, k-1\}^m$
- 3 Nodes with state *i* for character *c* form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c

Cladistic vs. Qualitative Characters

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \ldots, k-1\}^m$
- 3 Nodes with state *i* for character *c* form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c

Outline

- Multi-State Perfect Phylogeny
- Tumor Phylogeny Inference from Single-cell DNA-seq

Reading:

- Lecture notes
- M. El-Kebir. SPhyR: Tumor Phylogeny Estimation from Single-Cell Sequencing Data under Loss and Error. <u>Bioinformatics (ECCB 2018), 34(17):i671-679,</u> <u>2018</u>.

SPhyR: Tumor Phylogeny Estimation from Single-Cell Sequencing Data under Loss and Error

Mohammed El-Kebir – University of Illinois at Urbana Champaign, Department of Computer Science

ECCB 2018

Single-cell Tumor Phylogeny Inference

Goal: Given single-cell DNA sequencing data, find phylogenetic tree *T* **Requirement**: Evolutionary model for somatic mutations

Somatic Mutations Occur at Different Genomic Scales

Infinite Sites Assumption is too Restrictive for SNVs

Outline

- Perfect data (error free)
 - Problem statement
 - Combinatorial characterization of solutions
 - Exact algorithm
 - Results
- Real data (with errors)
 - Problem statement
 - Heuristic algorithm
 - Results
- Conclusions

k-Dollo Phylogeny (*k*-DP) Problem

Definition 1. A k-Dollo phylogeny T is a rooted, node-labeled tree subject to the following conditions.

- 1. Each node v of T is labeled by a vector $\mathbf{b}_v \in \{0, 1\}^n$.
- 2. The root r of T is labeled by vector $\mathbf{b}_r = [0, \dots, 0]^T$.

k-Dollo Phylogeny (*k*-DP) Problem

Definition 1. A k-Dollo phylogeny T is a rooted, node-labeled tree subject to the following conditions.

- 1. Each node v of T is labeled by a vector $\mathbf{b}_v \in \{0, 1\}^n$.
- 2. The root r of T is labeled by vector $\mathbf{b}_r = [0, \dots, 0]^T$.
- 3. For each character $c \in [n]$, there is exactly one gain edge (v, w) in T such that $b_{v,c} = 0$ and $b_{w,c} = 1$.
- 4. For each character $c \in [n]$, there are at most k loss edges (v, w) in T such that $b_{v,c} = 1$ and $b_{w,c} = 0$.

 $00000 \ 01110 \ 01110 \ 11000 \ 10111 \ 10111$

k-Dollo Phylogeny (*k*-DP) Problem

Definition 1. A k-Dollo phylogeny T is a rooted, node-labeled tree subject to the following conditions.

- 1. Each node v of T is labeled by a vector $\mathbf{b}_v \in \{0, 1\}^n$.
- 2. The root r of T is labeled by vector $\mathbf{b}_r = [0, \dots, 0]^T$.
- 3. For each character $c \in [n]$, there is exactly one gain edge (v, w) in T such that $b_{v,c} = 0$ and $b_{w,c} = 1$.
- 4. For each character $c \in [n]$, there are at most k loss edges (v, w) in T such that $b_{v,c} = 1$ and $b_{w,c} = 0$.

k-Dollo Phylogeny problem (*k*-DP). Given a binary matrix $B \in \{0,1\}^{m \times n}$ and parameter $k \in \mathbb{N}$, determine whether there exists a *k*-Dollo phylogeny for *B*, and if so construct one.

Combinatorial Characterization of *k*-DP

Theorem 3. Let $B \in \{0,1\}^{m \times n}$. The following statements are equivalent.

- 1. There exists a k-Dollo phylogeny T for B.
- 2. There exists a k-Dollo completion A of B.
- 3. There exists a k-completion A of B such that the binary factor matrix B' of (A, S[k]) is a perfect phylogeny matrix.

k-Dollo State Tree S[k]

Forbidden Submatrices in Solutions A to k-DP

1

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 2$$

Number of forbidden submatrices is $4k^4 + 8k^3 + 8k^2 + 4k + 1$ **Open question**: Hardness of deciding whether **B** admits a **k**-Dollo completion **A**

Results for *k*-DP

- Naive ILP does not scale and has O(mnk) variables and $O(m^3n^2k^4)$ constraints
- Column and cutting plane generation
 - Introduce variables and constraints only when needed
- Simulations with 60 instances for each *m*, *n* and *k*

Outline

- Perfect data (error free)
 - Problem statement
 - Combinatorial characterization of solutions
 - Exact algorithm
 - Results
- Real data (with errors)
 - Problem statement
 - Heuristic algorithm
 - Results
- Conclusions

k-Dollo Phylogeny Flip and Cluster (*k*-DPFC) problem. Given matrix $D \in \{0, 1, ?\}^{m \times n}$, error rates $\alpha, \beta \in [0, 1]$, integers $k, s, t \in \mathbb{N}$, find matrix $B \in \{0, 1\}^{m \times n}$ and tree *T* such that: (1) *B* has at most *s* unique rows and at most *t* unique columns; (2) $\Pr(D \mid B, \alpha, \beta)$ is maximum; and (3) *T* is a *k*-Dollo phylogeny for *B*.

$$\Pr(D \mid B, \alpha, \beta) = \prod_{p=1}^{m} \prod_{c=1}^{n} \begin{cases} \alpha, & d_{p,c} = 1 \text{ and } b_{p,c} = 0\\ 1 - \alpha, & d_{p,c} = 1 \text{ and } b_{p,c} = 1,\\ \beta, & d_{p,c} = 0 \text{ and } b_{p,c} = 1,\\ 1 - \beta, & d_{p,c} = 0 \text{ and } b_{p,c} = 0,\\ 1, & d_{p,c} = ? \end{cases}$$

SPhyR: Single-cell Phylogeny Reconstruction

- Coordinate ascent:
 - 1. k-Means with random seed to obtain cell clustering π and SNV clustering ψ
 - 2. ILP to obtain maximum likelihood **k**-Dollo completion **A** given **D**, **\pi** and **\psi**
 - 3. Identify maximum likelihood π given A and ψ
 - 4. Identify maximum likelihood $\pmb{\psi}$ given \pmb{A} and $\pmb{\pi}$
 - 5. Repeat until convergence
- Available on Github: https://github.com/elkebir-group/SPhyR

Simulation Results (*m* = 50, *n* = 50, *k* = 1)

Simulation Results (m = 50, n = 50, k = 1),

Conclusions

- k-Dollo parsimony model strikes a balance between realistic and yet sufficiently constrained
- Solutions are integer matrix completions
- SPhyR outperformed existing methods

Future work:

- Include $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ into optimization
- Model selection for *s*, *t* and *k*
- Hardness is open

Acknowledgments

• Experiments were run on NCSA Blue Waters