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Introduction - neoantigents
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T-Cell receptors Neoantigens
T-cell receptors or TCRs are molecules on Antigens are the unique molecules or
the surface of cancer fighting T cells that proteins that help immune cells identify
have the ability to interrogate individual and fight cancer cells. Neoantigens are
cancer cells and see beneath the cell unique to each patient’s tumor cells.
membrane.

TCRs have the potential to be genetically modified so T cells can identify the

neoantigen signature unique to one patient’s cancer cells and then attack them.

https://ziopharm.com/t-cell-therapy/tcrs-for-solid-tumors



Introduction - the challenges
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https://research.medgenome.com/immuno-oncology-solutions/neo-epitope-prioritization-analysis/



Introduction - the problem

Given a peptide, what's the
probability for it to present in the
surface as a neoantigent?



Introduction - previous approach

Predicting the peptide-HLA binding affinity
- State of the art performs very well in binding affinity prediction

- Butlags behind in predicting actual presentation
- Peptide-HLC binding is only one step in the pathway

- Lots of information to consider in the process!



Methods - what data/input/features to consider
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Methods - what data/input/features to consider
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Methods - mass spectrometry
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https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/spectrpy/massspec/masspecl.htm



Methods - what data/input/features to consider
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Methods - what data/input/features to consider
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Methods - what data/input/features to consider
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Methods - what data/input/features to consider
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Methods - neural network model

Sample ID

Protein 1D




Methods - neural network is a function approximator easy to be trained

b+ b

https://github.com/nehal 96/Deep-Learning-ND-Exercises/blob/master /Deep%20Neural%20Networks /tf-deep-neural -networks .md



Methods - final prediction

Pr (peptide i presented by allelek)
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https://github.com/nehal96/Deep-Learning-ND-Exercises/blob/master/Deep%20Neural%20Networks/tf-deep-neural-networks.md



Methods - final prediction

Pr (peptide i presented by allelek)
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Methods - model training

Loss(i)=—log (Bernoulli ( y; | Pr (peptide i presented)))



Results - different HLA indeed learns some pattern in the peptide sequence
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Results - benchmarks
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Results - evaluation metric
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Results - peptide presentation prediction performance
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Results - it performs very well
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Results - it performs very well
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Results - actual t-cell recognition
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Results - it against performs very well
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Results - it against performs very well
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Results - neoantigen identification in real cancer patient
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Results - surface formation units
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Results - there are some promising signals
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Results - there are some promising signals
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Conclusion

- Incorporating peptide-extrinsic features helps
- Better model the peptide sequence with different alleles type helps
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- Incorporating peptide-extrinsic features helps
- Better model the peptide sequence with different alleles type helps

- Lot’s of work go into the data collection (clean up, clinical experiments etc.) to make this an
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- Extend this work to HLA Class Il binding

- Consider the TCR binding or T-Cell precursor information (i.e. modeling more information in the
pathway)

- Better neural network model?
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