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Motivation & Background Variant Calling

Variant Calling

• Ideal scenario: enough read
depth
• (1) read processing,

(2) mapping,
(3) calling
• haplotype analysis:

HaplotypeCaller in Genome
Analysis Toolkit (GATK)
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Motivation & Background Somatic Variant Calling

Somatic Variant Calling

Differences from germline calling
• Allele frequency assumption: purity, multiple subclones, CNA
• Low VAF vs. Artifacts
• Somatic vs. Germline: matched tumor-normal sample
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Method

Overview

ASSEMBLY
PILEUP
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VCF
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BAM PROCESSING

HAPLOTYPE GENERATION

GROW PRUN
E

GROW

VCF OUTPUT

1 100 . A C 200 . . GT:PS 1|0:100 0|0:100
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Figure 1 Overview of the unified haplotype-based algorithm, showing joint calling of two samples with the population calling model. Two SNVs (blue
and red) are detected from read pileups, a deletion from local re-assembly, and a third SNV (yellow) from input VCF. The first two SNVs are added
to the haplotype-tree, which then contains four haplotypes. After computing likelihoods for read-haplotype pairs, the haplotype posterior distribution
computed by the calling model is used to prune the haplotype-tree by removing one haplotype (containing just the blue SNV). Next, the haplotype-tree
is extended with the deletion, and the process repeats. The polymorphic calling model is shown in the green box. Only the population genotype model
(Online Methods) is shown, in plate notation. Calling models also compute any model-specific inferences, such as de novo or somatic classification.

RESULTS
A unified variant calling algorithm
Octopus accepts sequencing data in the BAM and CRAM
formats, and performs internal pre-processing, including PCR
duplicate removal and adapter masking. Candidate variants
are identified from the reads using a combination of local re-
assembly and pileup inspection with repeat awareness. In ad-
dition, variants from existing VCF files may also be considered.
Haplotypes are then constructed exhaustively using a tree data
structure (with nodes representing alleles and root-to-tip paths
representing haplotypes) that is dynamically pruned, extended,
and collapsed based on partial read evidence (Fig. 1). Calls are
made once there is su�cient confident that haplotypes repre-
sented in the haplotype-tree explain all surrounding reads su�-
ciently well. Haplotype likelihoods are computed for each read
and haplotype using a hidden Markov model (HMM) with con-
text aware single nucleotide variant (SNV) and indel penalties.
These likelihoods are the input to a polymorphic genotype call-
ing model, the form of which depends on the experiment that
generated the sequencing data (Table 1). Although calling
models are responsible for calling variants, genotypes, and any
other model specific inferences, each must be able to compute
posterior distributions over haplotypes and genotypes, which
are used for updating the haplotype-tree and for phasing, re-
spectively. Variants are phased by evaluating the entropy of
the computed genotype posterior distribution. Variant calls are
then filtered, either with hard filters or a random forest classi-
fier. Octopus optionally creates realigned evidence BAMs after
calling by assigning and re-aligning reads to called haplotypes.

Germline variants in individuals
To assess germline calling accuracy, we called variants in
three well-characterized Genome in a Bottle (GIAB)19 sam-
ples: HG001 (NA12878), HG002 (NA24385), and HG005

(NA24631), in addition to the synthetic-diploid (Syndip) sam-
ple CHM1-CHM1320 that includes a validation set compiled
using an approach orthogonal to that used for the GIAB
truth sets. To account for di↵erent sequencing conditions we
tested several HG001 and HG002 replicates, including two li-
braries prepared using the 10X Genomics Chromium protocol
(Supplementary Note 1). We downloaded publicly available
BAM files for the two 10X libraries (from GIAB) and for CHM1-
CHM13 (from the Broad institute). BWA-MEM21 was used to
map all other data from raw FASTQ files. We compared Oc-
topus to GATK46, DeepVariant3, Strelka22, FreeBayes5, and
Platypus1. We ran each caller according to the authors’ recom-
mended settings (Supplementary Note 2). We trained Octo-
pus’ random forest classifier using three independent NA12878
replicates (Supplementary Note 1) to filter variants. De-
fault filters were used for DeepVariant and Strelka2. For Free-
bayes and Platypus, we tried recommended hard filters, but
found that this deteriorated performance as quantified by the
F-measure (the harmonic mean of precision and recall), so we
did not apply filters other than those based on variant or geno-
type quality (QUAL and GQ). Similarly, we found that using
VQSR filtering for GATK4 - as recommended by the best prac-
tice guidelines - degraded performance, so we only used QUAL
for filtering GATK4 calls. All calls were evaluated with RTG
tools vcfeval22.
Octopus had the highest F-measure on all tests other than

the HG005 test (Fig. 2b and Supplementary Table 1). Per-
formance di↵erences were marginal between Octopus, Deep-
Variant, and Strelka2 on the two Precision FDA Truth tests and
GIAB HG005 test, all of which use data from GIAB sequenced
on the Illumina HiSeq 2500 platform. Octopus substantially
outperforms other callers on the two 10X Genomics samples,
which have lower coverage and shorter read lengths than the
other samples (Supplementary Note 1), in addition to bar-
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Figure 1 Overview of the unified haplotype-based algorithm, showing joint calling of two samples with the population calling model. Two SNVs (blue
and red) are detected from read pileups, a deletion from local re-assembly, and a third SNV (yellow) from input VCF. The first two SNVs are added
to the haplotype-tree, which then contains four haplotypes. After computing likelihoods for read-haplotype pairs, the haplotype posterior distribution
computed by the calling model is used to prune the haplotype-tree by removing one haplotype (containing just the blue SNV). Next, the haplotype-tree
is extended with the deletion, and the process repeats. The polymorphic calling model is shown in the green box. Only the population genotype model
(Online Methods) is shown, in plate notation. Calling models also compute any model-specific inferences, such as de novo or somatic classification.

RESULTS
A unified variant calling algorithm
Octopus accepts sequencing data in the BAM and CRAM
formats, and performs internal pre-processing, including PCR
duplicate removal and adapter masking. Candidate variants
are identified from the reads using a combination of local re-
assembly and pileup inspection with repeat awareness. In ad-
dition, variants from existing VCF files may also be considered.
Haplotypes are then constructed exhaustively using a tree data
structure (with nodes representing alleles and root-to-tip paths
representing haplotypes) that is dynamically pruned, extended,
and collapsed based on partial read evidence (Fig. 1). Calls are
made once there is su�cient confident that haplotypes repre-
sented in the haplotype-tree explain all surrounding reads su�-
ciently well. Haplotype likelihoods are computed for each read
and haplotype using a hidden Markov model (HMM) with con-
text aware single nucleotide variant (SNV) and indel penalties.
These likelihoods are the input to a polymorphic genotype call-
ing model, the form of which depends on the experiment that
generated the sequencing data (Table 1). Although calling
models are responsible for calling variants, genotypes, and any
other model specific inferences, each must be able to compute
posterior distributions over haplotypes and genotypes, which
are used for updating the haplotype-tree and for phasing, re-
spectively. Variants are phased by evaluating the entropy of
the computed genotype posterior distribution. Variant calls are
then filtered, either with hard filters or a random forest classi-
fier. Octopus optionally creates realigned evidence BAMs after
calling by assigning and re-aligning reads to called haplotypes.

Germline variants in individuals
To assess germline calling accuracy, we called variants in
three well-characterized Genome in a Bottle (GIAB)19 sam-
ples: HG001 (NA12878), HG002 (NA24385), and HG005

(NA24631), in addition to the synthetic-diploid (Syndip) sam-
ple CHM1-CHM1320 that includes a validation set compiled
using an approach orthogonal to that used for the GIAB
truth sets. To account for di↵erent sequencing conditions we
tested several HG001 and HG002 replicates, including two li-
braries prepared using the 10X Genomics Chromium protocol
(Supplementary Note 1). We downloaded publicly available
BAM files for the two 10X libraries (from GIAB) and for CHM1-
CHM13 (from the Broad institute). BWA-MEM21 was used to
map all other data from raw FASTQ files. We compared Oc-
topus to GATK46, DeepVariant3, Strelka22, FreeBayes5, and
Platypus1. We ran each caller according to the authors’ recom-
mended settings (Supplementary Note 2). We trained Octo-
pus’ random forest classifier using three independent NA12878
replicates (Supplementary Note 1) to filter variants. De-
fault filters were used for DeepVariant and Strelka2. For Free-
bayes and Platypus, we tried recommended hard filters, but
found that this deteriorated performance as quantified by the
F-measure (the harmonic mean of precision and recall), so we
did not apply filters other than those based on variant or geno-
type quality (QUAL and GQ). Similarly, we found that using
VQSR filtering for GATK4 - as recommended by the best prac-
tice guidelines - degraded performance, so we only used QUAL
for filtering GATK4 calls. All calls were evaluated with RTG
tools vcfeval22.

Octopus had the highest F-measure on all tests other than
the HG005 test (Fig. 2b and Supplementary Table 1). Per-
formance di↵erences were marginal between Octopus, Deep-
Variant, and Strelka2 on the two Precision FDA Truth tests and
GIAB HG005 test, all of which use data from GIAB sequenced
on the Illumina HiSeq 2500 platform. Octopus substantially
outperforms other callers on the two 10X Genomics samples,
which have lower coverage and shorter read lengths than the
other samples (Supplementary Note 1), in addition to bar-
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• build from candidate alleles
• haplotype tree
• prune, stages: (1) pre: haplotype likelihood, (2) post: haplotype posterior
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Method Cancer Prior

Genotype Prior Models

1 Uniform
2 Hardy-Weinberg-Equilibrium (HWE)
3 Coalescent-HWE
4 Trio
5 ⋆ Cancer

For ploidy m, genotypes: g = (h1, . . . , hm);
for n populations inside a tumor, joint genotypes: g = (g1, · · · , gn).
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Method Cancer Prior

Cancer

gcancer = (ggerm, gsom)
p(gcancer | Mcancer) = p(ggerm | Mgerm)p(gsom | ggerm ,Msom), Mgerm can be
Coalescent-HWE prior model,
if there’s only 1 somatic haplotype

p(gsom | ggerm ,Msom) =
1

|ggerm|

|ggerm|∑
i=1

p(gsom | ggerm,i ,Msom)

if multi somatic haplotypes: (assume all haplotypes originate from germline, independently)

p(gsom | ggerm,Msom) =

|gsom|∏
j=1

p(gsom,j | ggerm) =

|gsom|∏
j=1

1
|ggerm,j|

|ggerm,j|∑
i=1

p(gsom | ggerm,j,i,Msom)
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Method Subclone genotype model

Graphical model & joint posterior

(a) (b)

S

|Rs|

�s

�s

Mg

r g

(c)

Supplementary Figure 10 Genotype models shown in plate notation. a Population. b Trio. c Subclone.
Symbols insides circles are latent variables, observed variables are shaded. Symbols inside boxes are repeated.
Symbols not inside a circle are parameters or models. Arrows define conditional relationships, red for
stochastic and green for deterministic. µ is used to denote parameters for a joint genotype prior model Mg.
Remaining symbols are defined in the the Online Methods.

14

We want to know joint posterior distribution

p(g,π | R,α,Mg) =
p(π, g,α,Mg,R)

p(α,Mg,R)

=
p(R | π, g)p(π | α)p(g | Mg)

p(α,Mg,R)

∝ p(g | Mg)
S∏

s=1
p(Rs | πs, g)p(πs | αs)

= p(g | Mg)
S∏

s=1

∫
p(Rs | ϕs, g)p(ϕs | αs)dϕs

= p(g | Mg)
S∏

s=1

∫ ∏
r∈Rs

|g|∑
i=1

ϕsip(r | hi)p(ϕs | αs)dϕs
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Method Subclone genotype model

Problem of computing

• This posterior is intractable Since ϕs ∼ Dir(αs)� So the integration over ϕs is intractable.
ϕ is latent variables.
• Using Variational Bayes (VB)

Approximate p∗(x) ≜ p(x | D) (intractable posterior) with q(x). Maximize
L(q) ≜ −DKL(q∥p̃) (not DKL(p∗∥p)), where p̃ = p(x,D) = p∗(x)p(D)

L(q) = −Eq

[
log

q
p̃

]
= −

∫
q(x) log q(x)

p∗(x)p(D) dµ(x)

= −
∫

q(x) log q(x)
p∗(x) − q(x) log p(D) dµ(x)

= −DKL(q∥p∗) + log p(D)
≤ log p(D)

Chuanyi Zhang (UIUC) Octopus 11 / 23
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Method Subclone genotype model

ELBO
9.4. The EM Algorithm in General 451

Figure 9.11 Illustration of the decomposition given
by (9.70), which holds for any choice
of distribution q(Z). Because the
Kullback-Leibler divergence satisfies
KL(q∥p) ! 0 , we see that the quan-
tity L(q, θ) is a lower bound on the log
likelihood function ln p(X|θ).

ln p(X|θ)L(q, θ)

KL(q||p)

carefully the forms of the expressions (9.71) and (9.72), and in particular noting that
they differ in sign and also that L(q, θ) contains the joint distribution of X and Z
while KL(q∥p) contains the conditional distribution of Z given X. To verify the
decomposition (9.70), we first make use of the product rule of probability to giveExercise 9.24

ln p(X,Z|θ) = ln p(Z|X, θ) + ln p(X|θ) (9.73)

which we then substitute into the expression for L(q, θ). This gives rise to two terms,
one of which cancels KL(q∥p) while the other gives the required log likelihood
ln p(X|θ) after noting that q(Z) is a normalized distribution that sums to 1 .

From (9.72), we see that KL(q∥p) is the Kullback-Leibler divergence between
q(Z) and the posterior distribution p(Z|X, θ). Recall that the Kullback-Leibler di-
vergence satisfies KL(q∥p) ! 0 , with equality if, and only if, q(Z) = p(Z|X, θ). ItSection 1.6.1
therefore follows from (9.70) that L(q, θ) " ln p(X|θ), in other words that L(q, θ)
is a lower bound on ln p(X|θ). The decomposition (9.70) is illustrated in Fig-
ure 9.11.

The EM algorithm is a two-stage iterative optimization technique for finding
maximum likelihood solutions. We can use the decomposition (9.70) to define the
EM algorithm and to demonstrate that it does indeed maximize the log likelihood.
Suppose that the current value of the parameter vector is θold. In the E step, the
lower bound L(q, θold) is maximized with respect to q(Z) while holding θold fixed.
The solution to this maximization problem is easily seen by noting that the value
of ln p(X|θold) does not depend on q(Z) and so the largest value of L(q, θold) will
occur when the Kullback-Leibler divergence vanishes, in other words when q(Z) is
equal to the posterior distribution p(Z|X, θold). In this case, the lower bound will
equal the log likelihood, as illustrated in Figure 9.12.

In the subsequent M step, the distribution q(Z) is held fixed and the lower bound
L(q, θ) is maximized with respect to θ to give some new value θnew. This will
cause the lower bound L to increase (unless it is already at a maximum), which will
necessarily cause the corresponding log likelihood function to increase. Because the
distribution q is determined using the old parameter values rather than the new values
and is held fixed during the M step, it will not equal the new posterior distribution
p(Z|X, θnew), and hence there will be a nonzero KL divergence. The increase in the
log likelihood function is therefore greater than the increase in the lower bound, as

�L(q) is evidence lower bound (ELBO). Maximizer is q = p∗.

Chuanyi Zhang (UIUC) Octopus 12 / 23
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Method Subclone genotype model

VB cont’

Bayes:
p(x | D) = p(D | x)p(x)

p(D) ,

(
post = likelihood · prior

evidence

)
And by assuming this factorization

q(g,Z,ϕ) = q(g)
S∏

s=1
q(Zs)q(ϕs)

where we introduce the latent binary matrix Zs, q(Zsnk) are so-called responsibilities of
assuming haplotype k for read n in sample s. By this factorization (mean field) we can
optimize on them alternately. Moreover, if we assume these priors are Dirichlet, then prior and
posterior are conjugated. Categorical (likelihood) and Dirichlet are conjugate distributions.

Chuanyi Zhang (UIUC) Octopus 13 / 23
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Method Cancer calling model

Calling Model

Assume 3 possible cases:
1 No somatic mutations, clean germline, the individual model with any germline prior

(merge) Mind

2 Copy number changes, but no somatic, the subclone model with germline prior (e.g.
Coalescent-HWE) Mind

3 Somatic occurs, possible CNA, the subclone model with cancer genotype prior.

Chuanyi Zhang (UIUC) Octopus 14 / 23
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Method Cancer calling model

Calling Model

Germline genotype posterior

p(g | R) =
∑

x
p(g,Mx | R)

=
∑

x
p(g, | Mx,R)p(Mx | R)

= p(g, | Mind)p(Mind | R)
+ p(g, | MCNV)p(MCNV | R)
+ p(g, | Msomatic)p(Msomatic | R)

where p(Mx | R) = p(Mx)p(R | Mx), and p(R | Mx) is the “evidence”; and
p(g | Msomatic) =

∑
g̃:g∈g̃ p(g̃ | Msomatic), g̃ = (ggerm, gsom), from cancer prior

Germline allele posterior p(a | R) =
∑

g:a∈g p(g | R).
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Method Cancer calling model

Credible somatic mass

psomatic(a | R)←
∑

? p(g̃ | Msomatic, credible)
There are K somatic haplotypes, then the credible somatic frequencies satisfy

p(ϕsk > τ | Msomatic) =

∫ 1

τ
Beta

(
θ ;αP+1,

P∑
i=1

αi

)
dθ

where ϕsk ∼ Beta(αk,
∑

α− αk) since ϕs ∼ Dir(αs) i.e. p(ϕs) =
1

B(α)

∏K
k=1 ϕ

αk−1
sk .

The credible somatic mass is

λs = 1−
∏

k
1− p(ϕsk > τ | Msomatic)

means the probability mass of ∃ at least 1 credible in K somatic haplotypes.
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Method Cancer calling model

Calling allele

Then λ = 1−
∏

s λs. (∃1 ∧ · · · ∧ ∃S = ∄1 ∨ · · · ∨ ∄S)

psomatic(a | R) = λ

(
1−

∏
s

∑
a

1{a/∈g̃.germ∧a∈g̃.som}p(g̃ | R,Msomatic)

)

Might be a typo?
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Result

Synthetic Tumors

Evaluation of somatic mutation calling is challenging
• Real tumor with manual inspected mutations
• Mix reads from unrelated individuals
• ⋆ Spike mutations directly into raw sequenceing reads from healthy tissue
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Result

Synthetic Tumors
generate (Supplementary Fig. 1).

Only Octopus and GATK4 called a plausible number of de
novo mutations (Table 2). Platypus and FreeBayes called
approximately 2x and 3x more de novo mutations than the
maximum expected. DeepVariant and Strelka2, despite being
the two most accurate germline callers behind Octopus, called
considerably more false positive de novo mutations than the
other tools, demonstrating that strong germline calling perfor-
mance does not guarantee accurate de novo calls. While we
are confident the performance of the other callers could be im-
proved with additional filtering, it is not always obvious how
this is best achieved. For example, filtering DeepVariant calls
by GQ resulted in almost complete loss of sensitivity before the
number of false positives fell below 100 (GQ: 46, TP SNV: 9,
TP INDEL: 0, FP: 90), while for Strelka2 we found that accu-
racy was highly sensitive to filtering by GQX (72 TP and 106
FP for GQX � 22; 50 TP and 41 FP for GQX � 23).

Synthetic tumours

Comprehensive evaluation of somatic mutation calls is chal-
lenging because there is no gold standard reference material to
compare with, and di↵erent tumour types have distinct muta-
tion profiles29. Although calls may be manually validated to
obtain an estimate of the false positive rate, it is not straight-
forward to estimate sensitivity as the ground truth remains
uncertain. Although attempts have been made to accurately
characterize somatic mutation profiles in real tumours by man-
ual inspection30, this process is limited by the sensitivity of
existing tools, and is too time consuming to perform across
a range of tumour types. An alternative strategy is to mix
reads from unrelated individuals to create virtual tumours2,31.
However, this approach is unlikely to yield data with realistic
mutation profiles, error profiles, and haplotype structure. A
third approach is to spike mutations directly into raw sequenc-
ing reads from healthy tissue, which was the approach taken
by the ICGC-TCGA-DREAM challenge32.

We designed an unbiased and comprehensive somatic muta-
tion calling performance test by improving the method used by
the ICGC-TCGA-DREAM challenge to ensure that synthetic
tumours would have realistic mutation profiles, error profiles,
and haplotype structure (Fig. 3). We created two synthetic tu-
mours by applying this method to reads from GIAB’s NA12878
high-coverage Illumina data (Supplementary Note 3). The
first was derived from skin cancer mutations using a mutation
rate of 1=kb (299; 873 mutations) and spike-in frequencies uni-
formly sampled between 2:5% and 50%, while the second was
derived from breast cancer mutations using a mutation rate
of 1=Mb (5; 956 mutations) and spike-in frequencies uniformly
sampled between 0:5% and 20% (Supplementary Fig. 2).
We used uniform spike-in frequencies, rather than simulating
sub-clonal architecture, so that we could more thoroughly as-
sess sensitivity across a range of variant allele frequencies. The
average read depths were 60x and 65x for the synthetic skin
and breast tumours, respectively. Independent normal samples
were created from leftover reads with average depths of 30x and
35x for the synthetic skin and breast tumours, respectively.

NA12878

2. Assign reads to germline haplotypes

3. Realign reads to germline haplotypes

4. Sample PCAWG tumour-specific calls 

5. Spike PCAWG mutations onto reads

VAF = 30%VAF = 15%

6. Remap spiked reads

1. Select sample with known germline

Figure 3 Overview of synthetic tumour creation. We used germline se-
quence data from a sample for which high-quality germline haplotypes
are available (NA12878), and assigned and realigned reads to these hap-
lotypes (Online Methods). This ensures that mutations are spiked onto
consistent germline haplotypes and minimizes spike-in errors due to indels.
We used spike-in mutations from tumour-specific whole-genome somatic
mutation calls from the pan-cancer analysis of whole genomes (PCAWG)
consortium33 to ensure realistic somatic mutation profiles. Mutations
were spiked in using a modified version of BAMSurgeon32 (Online Meth-
ods). Reads were merged and remapped before variant calling to remove
all realignment information.

Somatic mutations in paired tumour-normal samples

We evaluated the accuracy of Octopus at calling somatic mu-
tations in tumour-normal paired samples by calling variants in
the skin and breast synthetic tumours. Calls were compared
to Mutect231, Strelka22, LoFreq34, Lancet35, VarDict36, and
Platypus. We included Platypus, despite not being advertised
as a somatic variant caller, to contrast germline and somatic
callers, and because we are aware that germline callers (includ-
ing Platypus) are sometimes integrated into somatic mutation
calling pipelines. We trained Octopus’s random forest classifier
on chromosome X of the skin synthetic tumour data, which we
removed from the test set. However, we noted that Octopus
was comparatively less reliant on filtering than other methods
(Supplementary Fig. 3). Recommended filters were used for
other methods (Supplementary Note 2).

During the course of evaluation we discovered a small num-
ber of mutations that were not in the truth sets but appeared
real. This is not surprising since these data are derived from
cell lines. To discount such cases, we identified calls not in the
truth set but called by at least 3 of the 7 callers tested and
ignored these calls during evaluation (skin: 843; breast: 788).
In addition, we found a small fraction of true mutations (skin:
2; 766; breast: 1) that were incorrectly spiked in by BAMSur-
geon, which we also ignored during evaluation.

There was a clear trade-o↵ between recall (sensitivity) and
precision (positive predictive value) between callers (Fig. 4a).
Mutect2 and Strelka2 had similar F-Measures (Supplementary
Table 2) on the synthetic skin test (0:9263 and 0:9251, re-
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Result

Somatic Mutations Calling Accuracy
a

b

Figure 4 Somatic mutation calling accuracy for synthetic skin and breast tumours with a paired normal sample. a Precision-recall curves. Scoring
metrics used to generate curves were RFQUAL (Octopus), TLOD (Mutect2), SomaticEVS (Strelka2), QUAL (Lancet), QUAL (LoFreq), SSF (VarDict),
and QUAL (Platypus). Only PASS calls are used. VarDict is not visible as it is outside the axis limits due to low precision. Precisions on the two
tests are substantially di↵erent as the skin set has almost 50 times as many true mutations as the breast set. Dots on the Octopus curve are placed
at RFQUAL 7 (3 is used for the entire curve). b Recalls for each Variant Allele Frequency (VAF) using PASS variants. Points show true spike-in
VAFs. The approximate depth for the synthetic skin and breast tumours were 60x and 65x, and 30x and 35x for their normal pairs, respectively. All
comparisons to the synthetic tumour truth sets were performed using RTG Tools vcfeval.

spectively) despite Mutect2 showing higher recall; VarDict had
highest recall on both tests, but also had lowest precision;
Lancet had moderate precision and recall compared to other
methods; LoFreq had near perfect precision, but only Platypus
had lower recall. Octopus had higher recall than all callers other
than VarDict, and only slightly lower precision than Strelka2.
The number of false positives called by each caller is similar
in both tests suggesting that each caller had unique biases,
although it is possible that some of these false positive calls
are genuine cell line artifacts. Overall, Octopus had substan-
tially higher F-Measure on both tests than all other methods
(Supplementary Table 2).

Octopus also shows considerably better precision-recall
trade-o↵ than other callers, most notably at higher recalls.
The call filter threshold for Octopus is set reasonably low by
default (RFQUAL 3) to achieve high sensitivity, however, in-
creasing this to 7 reduces the number of false positives by over
a third in both tests, while only reducing the number of true

positives by 2:5% and 6% in the synthetic skin and breast tests,
respectively (Fig. 4a).

Most of the di↵erences in recall, particularly between the
best performing tools (Octopus, Strelka2, Mutect2, Lancet),
were due to low frequency mutations (Fig. 4b and Supple-
mentary Fig. 5). Sensitivity for mutations below 2:5% is poor
for all callers (0:01 for Octopus and 0:002 for Mutect2). At 60x
sequencing depth, a 2:5% VAF corresponds to an expectation
of less than two observations. However, Octopus had consider-
ably better sensitivity for mutations with VAFs between 4�10%
(3-5 expected observations at 60x) and had only slightly worse
recall than VarDict, which represents an approximate upper
bound on sensitivity. Mutect2 had marginally better sensitivity
at some moderate VAFs between 12:5% and 20%.

Finally, we re-ran all methods after downsampling the syn-
thetic tumour and normal samples. We observed an even
greater performance di↵erential between Octopus and the other
callers in all downsampled tests (Supplementary Table 2 and
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Result

Low coverage

(a)

(b)

Supplementary Figure 4 Somatic mutation calling accuracy for synthetic skin and breast tumours with
a paired normal sample with downsampling applied. a Precision-recall curves. Scoring metrics used to
generate curves were RFQUAL (Octopus), TLOD (Mutect2), SomaticEVS (Strelka2), QUAL (Lancet),
QUAL (LoFreq), SSF (VarDict), and QUAL (Platypus). Only PASS calls are used. VarDict is not visible
as it is outside the axis limits due to low precision. Precisions on the two tests are substantially di↵erent as
the skin set has almost 50 times as many true mutations as the breast set. Dots on the Octopus curve are
placed at RFQUAL 7 (3 is used for the entire curve). b Recalls for each Variant Allele Frequency (VAF)
using PASS variants. Points show true spike-in VAFs. All comparisons to the synthetic tumour truth sets
were performed using RTG Tools vcfeval (version 3.9.1).
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Result

Somatic Mutations Calling Accuracy without paired normal
a

b

Figure 5 Somatic mutation calling accuracy in synthetic skin and breast
tumours without a paired normal sample. a Precision-recall curves. Scor-
ing metrics used to generate curves were RFQUAL (Octopus) and QUAL
(Pisces). b Recalls for each Variant Allele Frequency (VAF). Germline and
somatic calls were compared to the truth sets with RTG Tools vcfeval.

Supplementary Fig. 4-8). In particular, Octopus was less af-
fected by lower coverage in the normal sample than the other
methods; Octopus had an F-Measure decrease of 0:9% in the
synthetic skin test with half the normal depth, compared with
2:4% for Strelka2. Moreover, we found that Octopus had bet-
ter overall performance calling somatic mutations in the syn-
thetic skin tumour downsampled by 25% to 45x (F-Measure
0:9266) than all others methods did on the full 60x sample
(maximum F-Measure 0:9263 from Mutect2).

Mutations in tumour-only samples

Most somatic detection tools require a paired normal sam-
ple2,34,35, but paired control tissues are not always available.
We tested Octopus’s ability to call mutations in tumour-only
data by calling variants in both synthetic tumours without pro-
viding the paired normal samples. We compared Octopus with
a tool designed for calling unpaired tumour samples, Pisces37.
Unsurprisingly, Octopus’ somatic calling accuracy is worse

compared with the paired test, most notably the number of
false positives is considerably higher on both tests. However,
Octopus substantially outperforms Pisces both in terms of re-
call and precision (Fig. 5a). Pisces calls 6:5x and 8:3x more
false positive somatic mutations than Octopus in the skin and
breast tests respectively, yet Octopus calls 2:3x and 1:3x more
true positives (Supplementary Table 3). The di↵erence in
sensitivity is primarily because Octopus is sensitive to allele
frequencies between 5 and 30%, in contrast to Pisces, which is
only sensitive to frequencies between 10 and 20% (Fig. 5b).
A significant challenge with tumour-only calling, compared

to somatic calling with a paired normal sample (of reasonable
depth), is correctly classification of variants as either somatic
or germline. Both Octopus and Pisces are capable of calling
and classifying germline and somatic variants, and we observed
that both callers misclassified a large number of true somatic

mutations as germline variants in the skin test, which largely
explains the drop-o↵ in recall at VAFs above 30% (Fig. 5b).
Unlike Pisces, Octopus provides a measure of uncertainty in
classification. Depending on the application, classification may
or may not be important; it may be su�cient to know whether
the variant is present or not. We therefore evaluated the perfor-
mance of both callers on combined germline and somatic truth
sets; ignoring somatic classification. We found that there was
little di↵erence in sensitivity between the callers, but a large dif-
ference in precision (Supplementary Fig. 9). Octopus called
marginally more false positives on the combined test than on
the somatic-only test (< 1; 700 in both tests), indicating that
there are few germline calling errors, while Pisces calls over
17; 000 additional false positives in both tests.

Phasing somatic mutations

In some situations, such as when compound heterozygous mu-
tations are suspected, it is clinically relevant to be able to de-
termine the germline haplotype a↵ected by a mutation38. Fur-
thermore, phasing information is informative of tumour clonal
architecture. To the best of our knowledge, no existing caller is
able to phase somatic mutations, either with germline variants
or other somatic mutations.

Since we designed the synthetic tumours used to benchmark
somatic mutation calling so that individual reads would respect
haplotype structure (but not necessarily read pairs), we know
the local phase of all somatic mutations. We investigated Oc-
topus’ ability to phase somatic mutations by evaluating how
well phasing information was recovered in the paired synthetic
skin tumour test. We found that of the 257; 930 somatic muta-
tions that Octopus calls, 57; 217 (22%) were phased with one
or more heterozygous germline variant. Furthermore, 9; 834
(4%) were phased with at-least one other somatic mutation,
and 2; 848 (1% overall) of these were also phased with a het-
erozygous germline variant. We found that approximately 93%
of reported somatic-germline phasings with phase quality 10 or
greater (Phred scaled) were correct, indicating that the phase
quality score is well calibrated.

DISCUSSION
We have shown that Octopus is more accurate than state-of-
the art variant callers on several germline samples using two in-
dependent validation sets. Performance di↵erences were most
evident on the two 10X and two X Ten samples (Consistency
and Syndip), arguably the most challenging tests because of
lower read depths and higher sequencing error rates than in the
other four samples. These results are likely because Octopus
is better able to discern noise due to longer haplotypes, more
e↵ective error modelling, and more realistic mutation priors.

Our analysis of germline indels indicate that Octopus is able
to call a wider range of indels than other methods. Octo-
pus calls considerably more true short (< 15bp) indels than
other methods, and even more than are represented in the
truth sets. One explanation for this is that existing meth-
ods systematically miscall a large number of indels as SNVs in
tandem repeat regions leading to under representation in the
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