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What is ctDNA?

- Circulating tumor DNA (ctDNA) is
found in the bloodstream Primary tumour

Apoptotic or
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sample

- Refers to DNA that comes from
cancerous cells and tumors. More
generally cell free DNA (cfDNA).
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- The dead cells get broken down and
their contents, including DNA, are
released into the bloodstream.

- CctDNA are small pieces of DNA,
usually comprising fewer than 200
nucleotides in length.

- Normal: apoptotic and necrotic
remains are cleared by infiltrating
phagocytes.

- Tumor: This does not happen
efficiently, accumulation of cellular
debris and its inevitable release into
the circulation
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Figure Source: Alix-Panabiéres, C., & Pantel, K. (2017). Clinical prospects of liquid biopsies. Nat Biomed Eng, 1, 0065.




Liquid biopsy for management
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Targets of this paper:

1.
2.

What factors determine ctDNA detection?

Can you identify evidence of therapy
resistance and relapse using ctDNA?

Can you track the sub-clonal nature of
relapse for ctDNA-driven therapeutics?



Overview of Phylogenetic ctDNA tracking
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Figure 1. Phylogenetic ctDNA tracking



Polymerase Chain Reaction
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Multiplex-PCR assay-pool
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Generate forward and reverse PCR primers for somatic SNVs detected in tumour targeting patient-specific SNVs

For every pair of primers, the probability of forming a primer-dimer was calculated and assays were
combined into pools such that any primer combination in a pool is not predicted to form primer-dimers.

e For each patient, assays were prioritized such that
o  Assays covering driver SNVs had highest priority
o  There was uniform sampling of the phylogenetic tree.

e Forthe baseline cohort 10 balanced pools were created, each containing on average 18 assays for
10 patients’ SNVs.
e For the longitudinal (14 patients) cohort, up to 10 extra assays were generated for samples.

e Assay panel size: median 18 SNVs (range 10-22)
o Median 11 clonal SNVs (2-20), median 6 sub-clonal SNVs



How does error propagate across cycles?

e The PCR process was modelled as a
stochastic process
error parameters estimated using
28-30 control plasma samples

For each target SNV, a target-specific
background-error model was built by
estimating the following from the control
samples:

e PCR efficiency (p): probability that
each molecule is replicated in a PCR
cycle

e  Errorrate (pe): error rate per cycle
for mutation type e

o  For example, wild-type allele A
to mutant allele G
e Initial number of molecules: X
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How does error propagate across cycles?

e The PCR process was modelled as a stochastic process
o  estimating the error parameters using a set of 28—30 control plasma samples

Error propagation model: As a molecule is replicated over the course of the PCR, more errors occur

Error in cycle i with X wild-type molecules in the system
Error molecule is duplicated in next cycle with probability p
New errors occur according to a binomial process B(X,, p,)
Can define recurrence relations for mean and variance for total number of molecules X_ and number of error
molecules E_
o E(E,,)=E(E)(1+p)+Xp,



Plasma SNV calling: Algorithm @X
Pe —

(0]
1. Estimate PCR efficiency (p) and per-cycle error rate (p_) using normal samples
2. Using the efficiency estimate, compute the starting number of molecules in the test set

3. Use the starting number of molecules and the prior efficiency distribution from the training set to estimate the PCR
efficiency in the test sample
4. For arange of potential real mutant fraction values 0 between 0 and 1 (they used 0.15 as upper bound), using the
error propagation model and parameters, estimate
a. the mean and variance for the total number of molecules
b. the mean and variance for the background error molecules
c. the mean and variance for the real mutation molecules

5. Use the mean and variance estimated in step (4) to compute the likelihood L(0) for each potential real mutant

fraction.
a. Select the value of § that maximizes this likelihood ( 6 L(O) - No mutatione
b. Compute the confidence score = L(OMLE) Conkidence score: higher the better

L(0) + L(6MLE)
6. Call a mutation positive if the confidence score passes a predefined threshold
a. (threshold of 95% for transitions and 98% for transversions)



Phylogenetic analysis of relapse

e Analysis is based on the CCF determined for the SNVs, clustered across tumor regions using a
modified version of Pyclone

o  Clusters with similar CCF values

e Mutation clusters were assumed to represent tumour subclones, either current or ancestral, and
were used as input for construction of the phylogenetic trees, primarily using CITUP

Relapse tree construction was performed as follows. (CRUK0063, as an example)

e Clustering was performed twice, once across five primary tumour regions and once across five
primary, one relapse, and six autopsy regions.

e When deriving a phylogenetic tree based on all tumour regions, for CCF clusters based on clustering,
only the primary tumour regions were maintained for mutations not involved in metastatic relapse. A
phylogenetic tree was constructed based on 17 mutation clusters.

Followed different strategies for different patients, depending on the clusters.



Targets of this paper:

1.
2.

What factors determine ctDNA detection?

Can you identify evidence of therapy
resistance and relapse using ctDNA?

Can you track the sub-clonal nature of
relapse for ctDNA-driven therapeutics?
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Figure 2. Clinicopathological predictors of ctDNA detection
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If at least 2 SNVs were detected
from ctDNA, consider sample
CctDNA positive.

Squamous cell more likely to be
detected:
o  Higher necrosis

Clonal SNVs in all 46
ctDNA-positive patients

A median of 94% of clonal SNVs
targeted by assay panels were
detected in the ctDNA of these
patients.

Subclonal SNVs were detected in
27 (68%) of these patients

A median of 27% of subclonal SNVs
within individual assay panels were
detected in ctDNA-positive patients



Tumor volume and clonal
VAF are well correlated

Linear modelling based on
the TRACERXx data predicted
that a primary tumour burden
of 10cm?® would resultin a
mean clonal plasma VAF of
0.1% (95% confidence
interval, 0.06-0.18%)

Estimated effective subclone
size influences subclonal
SNV detection.

Estimated effective subclone
size correlates with
subclonal plasma VAF
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Detected subclonal SNVs were mapped
back to M-seqg-derived tumour
phylogenetic trees

Detected private subclones (subclones
identified within only a single tumour
region) are coloured red. Shared
subclones (subclones detected in more
than one tumour region) are light blue.

The top row of the phylogenetic trees
represent subclonal nodes targeted by
primers within that patient’s assay panel

The bottom row represent subclonal
nodes detected in ctDNA

o  Grey subclonal nodes => not
detected in ctDNA.
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2. Can you identify evidence of therapy
resistance and relapse using ctDNA?
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ctDNA detection in plasma was
defined as the detection of two
tumour-specific SNVs.

Preoperative and relapse
phylogenetic trees represented by
ctDNA are illustrated above each
graph.

The median interval between ctDNA
detection and NSCLC relapse that
was confirmed by CT imaging
indicated by clinical and chest
radiograph follow-up (lead time) was
70 days (range, 10-346 days).
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ctDNA detection in plasma was
defined as the detection of two
tumour-specific SNVs.

Preoperative and relapse
phylogenetic trees represented by
ctDNA are illustrated above each
graph.

The median interval between ctDNA
detection and NSCLC relapse that
was confirmed by CT imaging
indicated by clinical and chest
radiograph follow-up (lead time) was
70 days (range, 10-346 days).



Stratification

Kaplan—Meier curve demonstrating relapse-free
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3. Can you track the sub-clonal nature of
relapse for ctDNA-driven therapeutics?
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Figure 6. ctDNA tracking of lethal cancer subclones in CRUK0063

Patient CRUK0063 was
examined through the PEACE
post-mortem study 24h after
death

Single SNVs from two private
subclones (phylogenetic
clusters 5 and 9) were also
detectable in ctDNA at day 466

The mean plasma VAF of the
SNVs detected in phylogenetic
clusters 11,8,12,9and 5
mirrored their proximity to the
clonal cluster (light blue) in the
M-seqg-derived phylogenetic tree

The mean clonal VAF decreased
in response to palliative
radiotherapy and chemotherapy,
but increased at day 767



Feasibility (for primary tumor detection)

e A primary NSCLC tumour volume of 10 cm? predicted a ctDNA plasma VAF of 0.1%.

o  The sensitivity of the multiplex-PCR NGS platform was in excess of 99% at VAFs of 0.1% and above,
suggesting optimum platform sensitivity with tumour burdens in excess of 10cm?3 .

o Low-dose CT lung screening can identify lung nodules with diameters from 4mm = volume of 0.034 cm?.

o  Based on this study, a tumour volume of 0.034 cm?® would equate to a plasma VAF of 1.8x107% %, which is at
the extreme of detection limits of current ctDNA platforms.

Therefore, using current technologies, the sensitivity of clonal-SNV ctDNA-directed early-NSCLC screening may be
constrained by tumour size.

e Cost: Estimated at USS$1,750 per patient for sequencing of a single tumour region, synthesis of a patient-specific
assay panel and profiling of five plasma samples.



Conclusions

e Predictors of ctDNA detection were characterized by non-adenocarcinoma histology, necrosis,
increased proliferative indices and lymphovascular invasion.

e Tumour volume correlated with the mean plasma VAF of clonal SNVs in ctDNA-positive NSCLCs

e Demonstrated the ability to detect relapse, often priorto CT
To explore:

e Effect of non-uniqueness of phylogenetic trees
e Longitudinal analysis of clonal and subclonal composition variation
e More efficient modelling of PCR errors



Questions?

Thank you for your attention!



