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Outline
• Recap
• Tumor Phylogeny Inference from Bulk DNA-seq with Copy-Number 

Aberrations

Reading:
• M. El-Kebir, G. Satas , L. Oesper and B.J. Raphael. Inferring the Mutational 

History of a Tumor using Multi-State Perfect Phylogeny Mixtures. Cell 
Systems, 3(1):43-53, 2016.
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Infinite Sites Model = Two-state Perfect Phylogeny
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Infinite sites model: multiple mutations 
never occur at the same position

[Kimura, 1969]

…

…

The genome is large

Mutations are rare
A
B
C
D
E

Mutated Loci

1: mutated
0: not

0  0  0  0  1   1
0  0  0  1  1   1
0  0  1  0  1   0
1  0  0  0  0   0
1  1  0  0  0   0

All sites are bi-allelic: mutated or not.



Infinite Alleles Model = Multi-state Perfect Phylogeny
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Infinite alleles model: 
• For any mutation, there are an 

infinite number of possibilities of 
what mutation looks like (states).

• So, the same position can be 
mutated multiple times, but it 
never mutates to the same “allele” 
or state.   

…

…

Mutation Site

Characters have integer states

Site History:

Time
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Tumor Evolution as a Phylogenetic Tree
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Normal cell

Founder 
clone

Clonal Theory [Nowell, 1976]

Present time
Tumor Phylogenetic Tree

???

Somatic
mutation



Observations are Leaves of a Perfect Phylogeny T

Single-cell
sequencing
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leaves of T

1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 0 0
1 0 0 0 1 0
1 0 0 0 1 1

SNVs

M = 

Assumptions:
• Mutations are single

nucleotide variants (SNVs)
• Infinite sites assumption

‘1’ state

‘0’ state

Seq. method Inferring T Complexity

single-
cell

unmixed two-state 
perfect phylogeny

O(mn)

Two-State Perfect Phylogeny Tree T
Tumor Snapshot Binary Matrix B

1
0

O(mn)
[Gusfield, 1991]



Observations are Mixtures of the Leaves of T

Two-State Perfect Phylogeny Tree T
Mixing Proportions U

Bulk
sequencing
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NP-complete
AncesTree
[El-Kebir, Oesper et al. 2015]

Variant Allele Frequencies Matrix F

F = 
0.4  0.0  0.0  0.0  0.3  0.2 
0.3  0.3  0.0  0.3  0.0  0.0
0.4  0.4  0.4  0.0  0.0  0.0

SNVs

sam
ples

S1

S3

S2

S1

S3
S2

Seq. method Inferring T Complexity

single-
cell

unmixed two-state 
perfect phylogeny

O(mn)

bulk mixed two-state
perfect phylogeny 

NP-complete

CGACGTGA
GCGGACGT

…GAGAAAGCTGCGGACGTGGACGA…
TGCGGACG

TACGTGGA
GCGTACGT

VAF: 0.4

S3

CGACGTGA

…GAGAAAGCTGCGGACGTGGACGA…
TGCGGACG

GACGTGGA

VAF: 0

S2

0.8 0.6 0.2 0.2 0.4S3 S2 S1
UTumor Snapshot

0.0
0.4

TrAp [Strino et al., 2013], PhyloSub [Jiao et al., 2014]
CITUP [Malikic et al., 2015], BitPhylogeny [Yuan et al., 2015]
LICHeE [Popic et al., 2015],  …



Copy-Number Aberrations Confound VAFs
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VAF: 0.4

TACGTGGA
GCGTACGT

TACGTGGA
GCGTACGT

GCGGACGT
CGACGTGA

…GAGAAAGCTGCGGACGTGGACGA…
TGCGGACG

GACGTGGA

S3

VAF: 0.4

S2

TACGTGGA
GCGTACGT

TACGTGGA
GCGTACGT

GCGGACGT
CGACGTGA

…GAGAAAGCTGCGGACGTGGACGA…
TGCGGACG

GACGTGGA

F = 
0.4  0.0  0.0  0.0  0.3  0.2 
0.3  0.4  0.0  0.3  0.0  0.4
0.4  0.4  0.4  0.0  0.0  0.4

SNVs

sam
plesS3

S2

S1

Need > 2 states:
0 : non-mutated

1 : mutated

2 : single-copy 
amplification

3 : …

…

…

…

amplification



Outline

• Multi-State Perfect Phylogeny Mixture Problem

• Combinatorial Characterization of Solutions

• Application to Cancer Bulk-Sequencing Data

• Results
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Infinite Sites Generalizes to Infinite Alleles
Two-State Perfect Phylogeny – Infinite sites assumption: a character changes state once
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VAF Factorization Problem (VAFFP): Given F, find U and B such that F = U B    [El-Kebir, Oesper et al., 2015]

Two-State Perfect Phylogeny – Infinite sites assumption: a character changes state once
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Two-state Perfect Phylogeny Mixture Problem: Given F, find U and B such that F = U B    [El-Kebir, Oesper et al., 2015]

Multi-State Perfect Phylogeny – Infinite alleles assumption: a character changes to a state once
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VAFFP is NP-complete for m = O(n)

Theorem [El-Kebir, Oesper et al., 2015; Popic et al., 2015]
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Theorem [El-Kebir et al., 2016]
PPMDP is NP-complete even for m = 2 and k = 2
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• Application to Cancer Bulk-Sequencing Data
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Application to Cancer Bulk Sequencing
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SPRUCE Enumerates Phylogenies
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[0.28, 0.28]

[0.53, 0.95] [0.36, 0.58]

Mixing proportions

VAF interval

PPFIA1 in sample D

Somatic Phylogeny Reconstruction Using Combinatorial Enumeration
Available at: http://compbio.cs.brown.edu/projects/spruce/

.

.

.
VAF confidence interval



SPRUCE:
Somatic Phylogeny 
Reconstruction 
Using Combinatorial 
Enumeration
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Parameters:
• # characters n: 5, 15

• # samples m: 2, 5, 10

Methods:
• SPRUCE
• PhyloWGS [Deshwar et al., 2015]
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More Samples vs. More Coverage
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Violations of Infinite Alleles Assumption
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Cancer Cell Fractions (CCFs) Cannot Be Inferred A Priori
CCFs are used extensively in studying intra-tumor 
heterogeneity and tumor evolution:

1. Timing of driver mutations
• Andor et al. Nature (2015)

• McGranahan et al. Science Translational Medicine (2015)

2. Tumor evolution and phylogeny reconstruction
• Bolli et al. Nature communications (2014)

• Nik-Zainal et al. The life history of 21 breast cancers. Cell (2012)
• Sanborn et al. PNAS (2015)
• Sottoriva et al. Nature Genetics (2015)

3. Developmental patterns of metastases
• Brastianos et al. Cancer Discovery, (2015)
• Gundem et al. Nature (2015)

15

Sample S2Sample S1

CCF(   ) = 
# tumor cells with

# tumor cells 

VAF(   ) ≈ 0.27

CCF(   ) = 0.5

μ(1,1) = 0.8

μ(2,1) = 0.2

VAF(   ) ≈ 0.27

CCF(   ) = 0.75

μ(2,1) = 0.2

μ(1,1) = 0.8



Metastatic Evolution in Prostate Tumor
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Gundem et al. (2015). Nature.
The evolutionary history of lethal metastatic prostate cancer

Input:
• 10 samples: 

whole-genome & targeted sequencing
• ~110 SNVs

Tree building:
1. Infer cancer cell fraction (CCF) 

for each SNV in each sample

2. Cluster SNVs by CCFs 
across samples

3. Construct tree using 
Pigeon-Hole-Principle
(Sum Condition)

Adapted from:
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C2orf16
C7orf47
CPNE4

ENSG00000215462
FAM184B

GPR4
HEATR6

KIAA1683
NAPSB
OR7E8P
OR8B8
PEX7
PRCC
PSTK
RB1

RUNX2
SCN4A

SLC26A2
TBL1XR1
WHSC2
XRCC5
ZFP28

ZFYVE21
ZNF527

DNAJA4
FLG

TFB1M
ZNF396

CDHR5
PPFIA1
SSPO

ENSG00000196960
EPB41L1
GRIN2B
PTPRT
ZNF420

JPH2
KLHL3

PI3
SCN4A-2
SLC15A1

RC3H2 PI4K2B -

DNAH5
PRDM5
ZBTB20
ZNF407

-

CNR1
SENP6

ELMOD2
ENSG00000237116

GPR98

-

C2orf70
CCDC21
GALNS
PLXNA4
ZNF579

APLF
FREM3
TAS2R4

PRR5-ARHGAP8
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Cancer Cell Fractions Cannot Be Inferred A Priori
S1 S2 Gundem et al.
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*  (1,1,0)



Conclusions
• Copy-number aberrations confound variant allele frequencies

• SNVs and CNAs must be considered jointly in phylogeny reconstruction

• Generalization of infinite sites for SNVs is infinite alleles for SNVs + CNAs
• Multi-state Perfect Phylogeny Mixture Problem (PPM)

• Complete combinatorial characterization of the problem
• Solutions are constrained spanning trees in a directed multi-graph
• PPM is NP-complete for k = 2 and m = 2

• Using combinatorial structure, SPRUCE accurately recovers simulated trees

• Cancer cell fractions cannot be uniquely inferred a priori by considering SNVs in isolation

• Precise mathematical models are needed to describe evolutionary process in cancer
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