CS 598MEB Computational Cancer Genomics Lecture 3

Mohammed El-Kebir January 22, 2019

Course Project

- 1-2 students per project
- First write a proposal, which will receive feedback from instructor and fellow students
- Then, conduct research and write a paper
- Pick venue (conference/journal) and use LaTeX style for your paper
- Students will anonymously peer review submitted papers using EasyChair (if time permits)

Lecture Outline

- Recap
- Two-state Perfect Phylogeny Mixtures

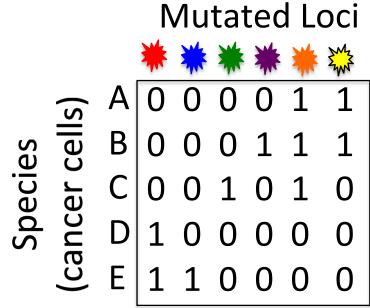
Reading

- M. El-Kebir, L. Oesper, H. Acheson-Field and B. J. Raphael. Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. <u>Bioinformatics</u> (<u>Special Issue: Proceedings of ISMB</u>), 31(12):i62-i70, 2015
- D. Pradhan and M. El-Kebir. On the Non-uniqueness of Solutions to the Perfect Phylogeny Mixture Problem. In: Blanchette M., Ouangraoua A. (eds) Comparative Genomics. RECOMB-CG 2018. Lecture Notes in Computer Science, vol 11183. Springer, Cham.

Infinite Sites Model

The genome is large Mutations are rare

Infinite sites model: multiple mutations never occur at the same position



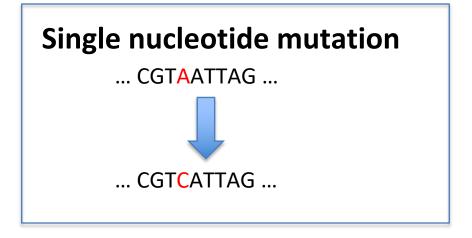
1: mutated

0: not

All sites are bi-allelic: mutated or not.

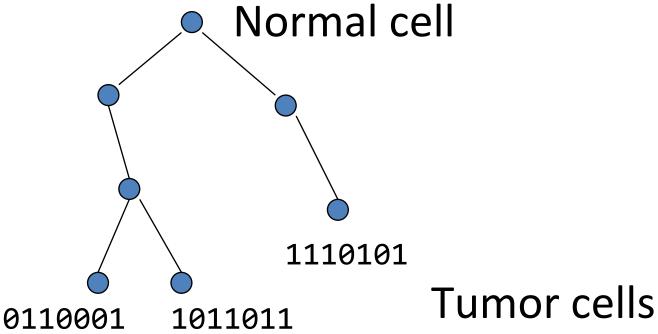
[Kimura, 1969]

Progression of Somatic Mutations



0 = normal

1 = mutated



Root is the normal, founder cell and leaves are cells in tumor.

Infinite sites assumption: each locus mutates only once.

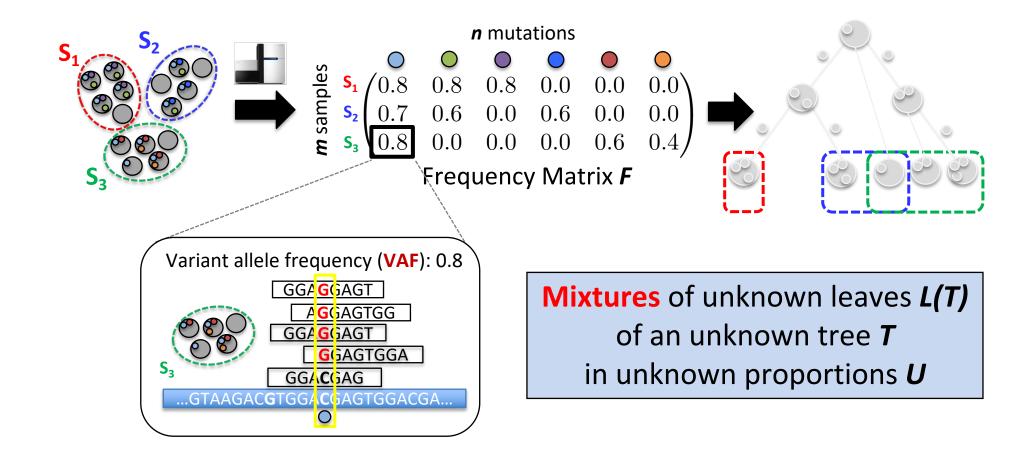
Lecture Outline

- Recap
- Two-state Perfect Phylogeny Mixtures

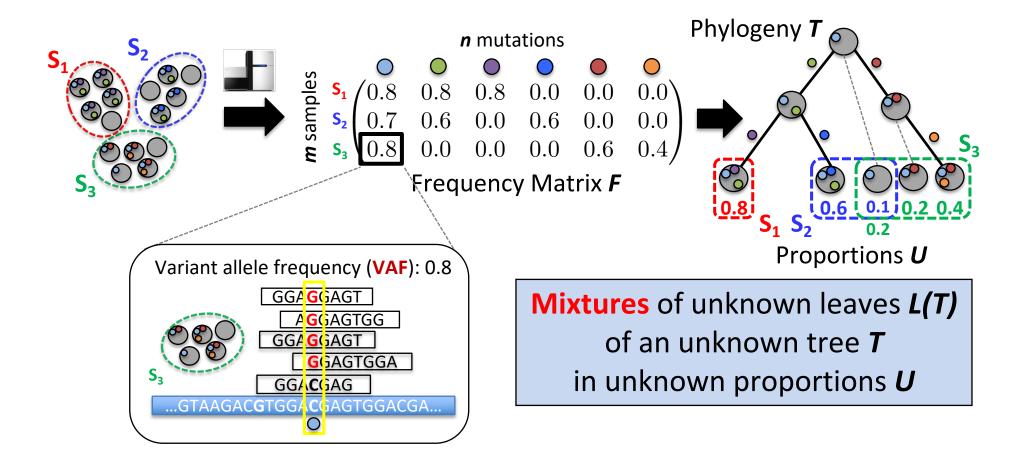
Reading

- M. El-Kebir, L. Oesper, H. Acheson-Field and B. J. Raphael. Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. <u>Bioinformatics</u> (<u>Special Issue: Proceedings of ISMB</u>), 31(12):i62-i70, 2015
- D. Pradhan and M. El-Kebir. On the Non-uniqueness of Solutions to the Perfect Phylogeny Mixture Problem. In: Blanchette M., Ouangraoua A. (eds) Comparative Genomics. RECOMB-CG 2018. Lecture Notes in Computer Science, vol 11183. Springer, Cham.

Sequencing and Tumor Phylogeny Inference

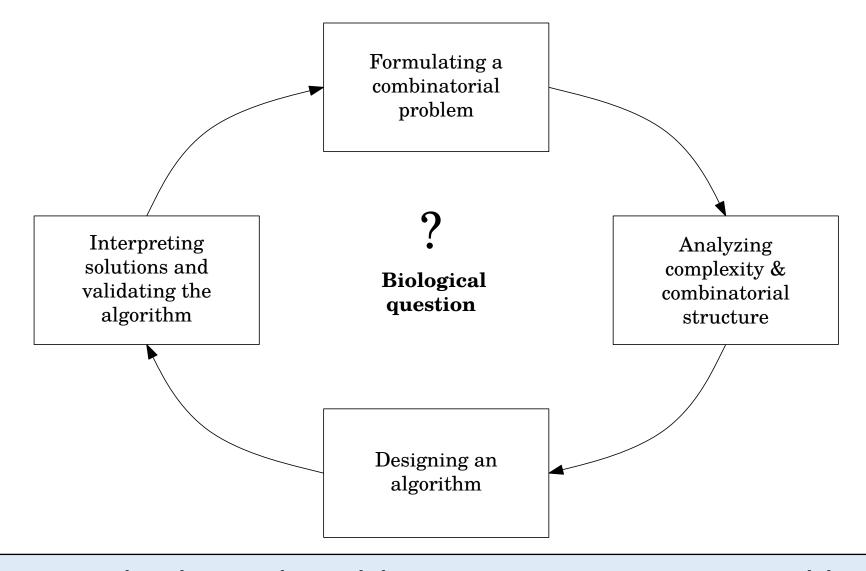


Sequencing and Tumor Phylogeny Inference



Tumor Phylogeny Inference: Given frequencies *F*, find phylogeny *T* and proportions *U*

Key Challenge in Computational Biology

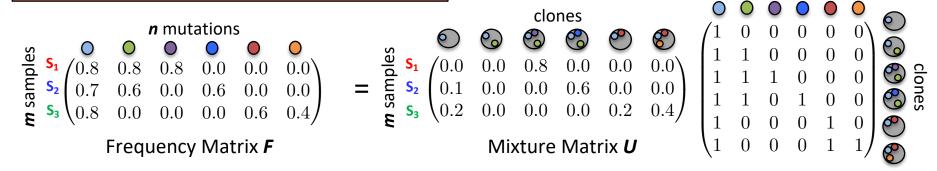


Translating a biological problem into a computational biology

Perfect Phylogeny Mixture

Assumptions:

- Infinite sites assumption:
 a character changes state once
- Error-free data



Rows of *U* are proportions:

$$u_{pj} \ge 0$$
 and $\sum_{j} u_{pj} \le 1$

Perfect Phylogeny Theorem [Estabrook, 1971] [Gusfield, 1991]

Restricted PP Matrix B

Restricted PP Tree **T**

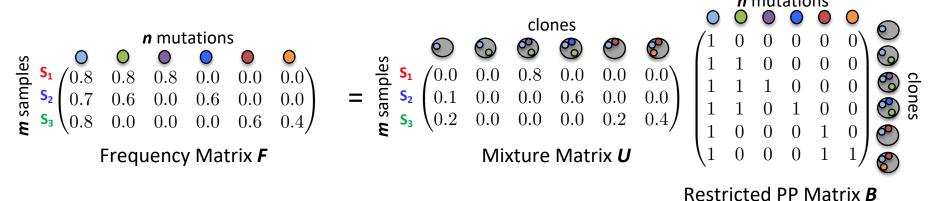
‡ Equivalent

Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given F, find U and B such that F = UB

Previous Work

Variant of PPM:

TrAp [Strino *et al.*, 2013], PhyloSub [Jiao *et al.*, 2014] CITUP [Malikic *et al.*, 2015], BitPhylogeny [Yuan *et al.*, 2015] LICHeE [Popic *et al.*, 2015], ...



Rows of *U* are proportions:

$$u_{pj} \ge 0$$
 and $\sum_{j} u_{pj} \le 1$

Perfect Phylogeny Theorem [Estabrook, 1971] [Gusfield, 1991]

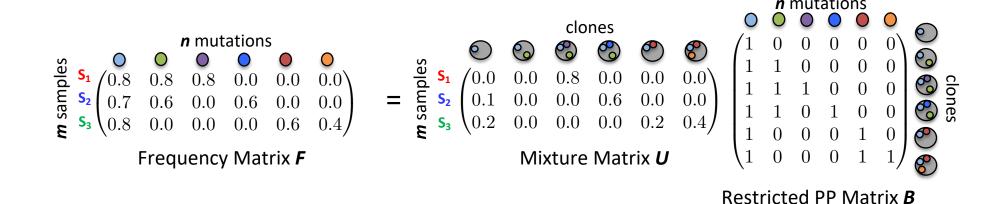
Restricted PP Tree **T**

‡ Equivalent

Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given F, find U and B such that F = UB

Combinatorial Characterization

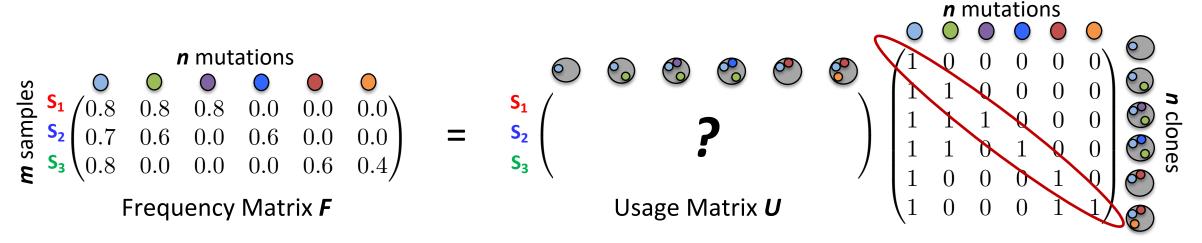
Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015] Given F, find U and B such that F = U B



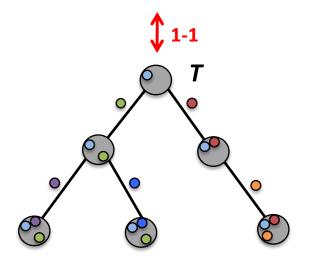
- Combinatorial characterization involves investigating what (optimal) solutions look like
- This starts by asking questions!

Given F and T (or B), is there a usage matrix U?

PPM: Given **F**, find **U** and **B** such that **F** = **U B**

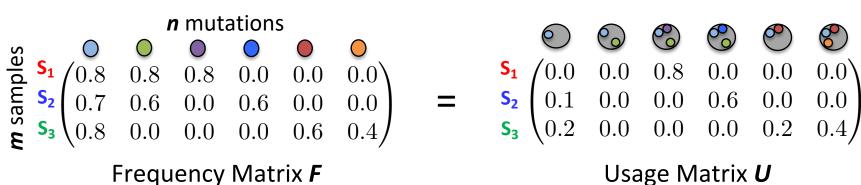


Restricted PP Matrix B

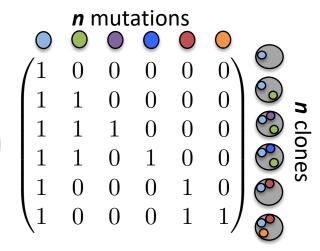


Given F and T (or B), is there a usage matrix U?

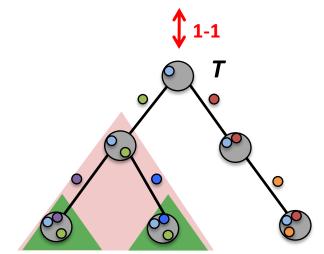
PPM: Given **F**, find **U** and **B** such that **F** = **U B**



Usage Matrix **U**



Restricted PP Matrix B



Lemma: B is invertible

Given F and B, U is unique: $U = 2 F B^{-1}$

Lemma:

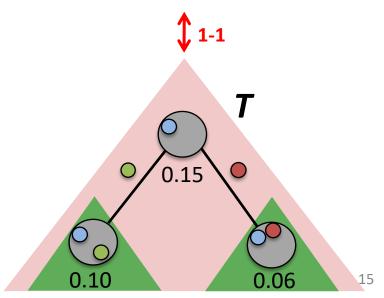
Given F and T (or B), is there a usage matrix U?

PPM: Given **F**, find **U** and **B** such that **F** = **U B**

$$\begin{pmatrix}
0.15 & 0.1 & 0.06 \\
0.2 & 0.05 & 0.04
\end{pmatrix} = \begin{pmatrix}
-0.01 & 0.1 & 0.06 \\
0.11 & 0.05 & 0.04
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix}$$
Frequency Matrix \boldsymbol{v}

Usage Matrix \boldsymbol{v}

Restricted PP Matrix B

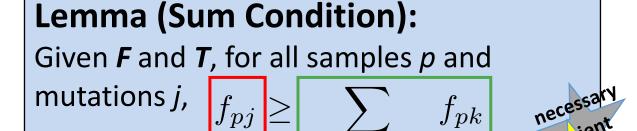


Lemma:

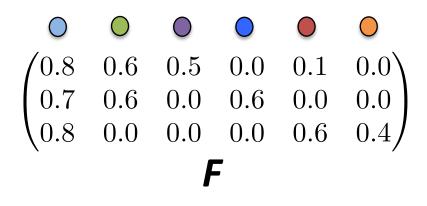
$$u_{pj} = f_{pj} - \sum_{k \text{ child of } j} f_{pk}$$

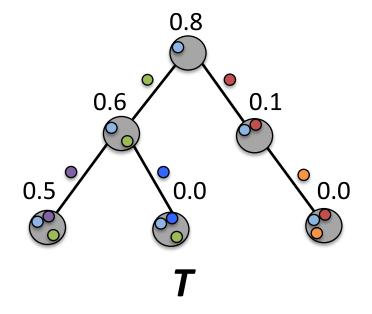
Lemma:

$$u_{pj} = f_{pj} - \sum_{k \text{ child of } j} f_{pk}$$



k child of j





Lemma (Sum Condition):

Given ${\it F}$ and ${\it T}$, for all samples ${\it p}$ and mutations ${\it j}$, $f_{pj} \geq \sum_{i} f_{pk}$

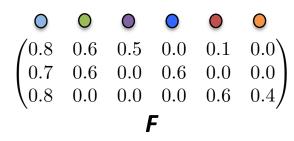
k child of j

necessary sufficient

Lemma (Ancestry Condition):

Given ${\it F}$ and ${\it T}$, for all samples p and mutations k child of j, $f_{pj} \geq f_{pk}$

necessary



Lemma (Sum Condition):

Given ${\it F}$ and ${\it T}$, for all samples ${\it p}$ and mutations ${\it j}$, $f_{pj} \geq \sum f_{pk}$

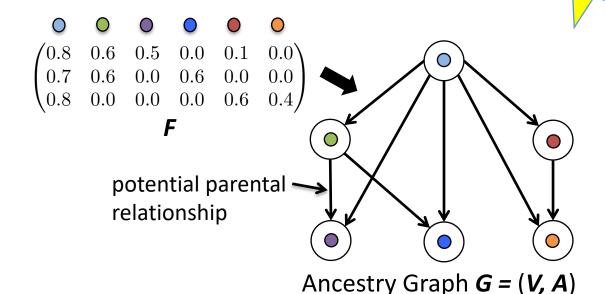
k child of j

necessary sufficient

Lemma (Ancestry Condition):

Given ${\it F}$ and ${\it T}$, for all samples ${\it p}$ and mutations ${\it k}$ child of ${\it j}$, $f_{pj} \geq f_{pk}$

necessary



Ancestry graph G = (V, A); given F

- Vertex for every mutation
- Edge $(j,k) \in A$ iff $f_{pj} \geq f_{pk}$ for all samples p

Lemma (Sum Condition):

Given ${\it F}$ and ${\it T}$, for all samples ${\it p}$ and mutations ${\it j}$, $f_{pj} \geq \sum f_{pk}$

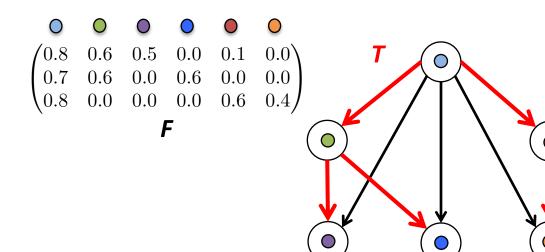
k child of j

necessary sufficient

Lemma (Ancestry Condition):

Given ${\it F}$ and ${\it T}$, for all samples p and mutations k child of j, $f_{pj} \geq f_{pk}$

necessary



Ancestry Graph G = (V, A)

Theorem 2:

PPM is NP-complete

Ancestry graph G = (V, A); given F

- Vertex for every mutation
- Edge $(j,k) \in A$ iff $f_{pj} \geq f_{pk}$ for all samples p

Theorem 1:

T is a solution to the PPM if and only ifT is a spanning tree of G satisfying the SumCondition

Solving the PPM problem: ILP formulation

$$\max \sum_{(v_j, v_k) \in A'} x_{jk}$$

s.t.
$$\sum_{v_j \in \delta^+(v_r)} x_{rj} = 1$$

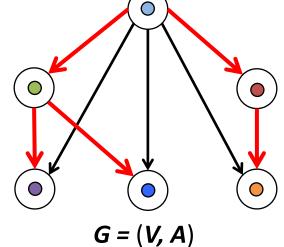
$$x_{kl} \le \sum_{v_j \in \delta^-(v_k)} x_{jk}$$

$$\sum_{v_j \in \delta^-(v_k)} x_{jk} \le 1$$

$$\sum_{v_j \in \delta^-(v_k)} f_{pk} x_{jk} \ge \sum_{v_l \in \delta^+(v_k)} f$$
$$x_{jk} \in \{0, 1\}$$

Find the largest set of edges in G

Exactly one root node



$$\forall (v_k, v_l) \in A$$
 Connectivity

$$\forall v_k \in V$$
 Tree

$$f_{pk}x_{jk} \geq \sum f_{pl}x_{kl} \quad \forall p \in [m], \, v_k \in V \quad \text{Sum condition}$$

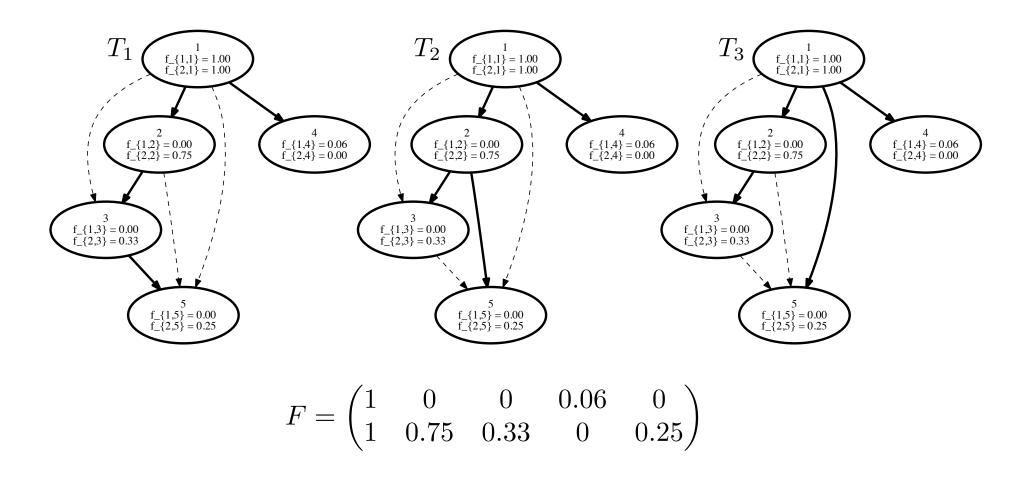
$$\forall (v_j, v_k) \in A'$$

Non-uniqueness of Solutions to PPM

$$F = \begin{pmatrix} 1 & 0 & 0 & 0.06 & 0 \\ 1 & 0.75 & 0.33 & 0 & 0.25 \end{pmatrix}$$

Question 0: Reconstruct all solutions?

Non-uniqueness of Solutions to PPM



Question 1: Can we determine the number of solutions?

Question 2: Can sample solutions uniformly at random?

Question 3: How to enumerate solutions?

Recall: Different Types of Problems!

Problem Π with instance X and solution set $\Pi(X)$:

- Decision problem:
 - Is $\Pi(X) = \emptyset$?
- Optimization problem:
 - Find $y^* \in \Pi(X)$ s.t. $f(y^*)$ is optimum.
- Counting problem:
 - Compute $|\Pi(X)|$.
- Sampling problem:
 - Sample uniformly from $\Pi(X)$.
- Enumeration problem:
 - Enumerate all solutions in $\Pi(X)$

Algorithms:

Set of instructions for solving problem.

- Exact
- Heuristic

On the Complexity of #PPM (new results)

Question 1: Can we determine the number of solutions?

Question 2: Can sample solutions uniformly at random?

#PPM: Given F, count the number of pairs (U, B) composed of mixture matrix U and perfect phylogeny matrix B such that F = U B

On the Complexity of #PPM (new results)

Question 1: Can we determine the number of solutions?

Question 2: Can sample solutions uniformly at random?

#PPM: Given F, count the number of pairs (U, B) composed of mixture matrix U and perfect phylogeny matrix B such that F = U B

#P is the complexity class of counting problems whose decision problems are in NP

Every problem in #P can be reduced in polynomial time to any problem in #P-complete, preserving cardinalities

On the Complexity of #PPM (new results)

Question 1: Can we determine the number of solutions?

Question 2: Can sample solutions uniformly at random?

#PPM: Given F, count the number of pairs (U, B) composed of mixture matrix U and perfect phylogeny matrix B such that F = U B

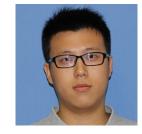
#P is the complexity class of counting problems whose decision problems are in NP

Every problem in #P can be reduced in polynomial time to any problem in #P-complete, preserving cardinalities

Theorem: #PPM is #P-complete

Theorem: There is no FPRAS for #PPM

Theorem: There is no FPAUS for PPM



Yuanyuan Qi

Outline

Background and theory:

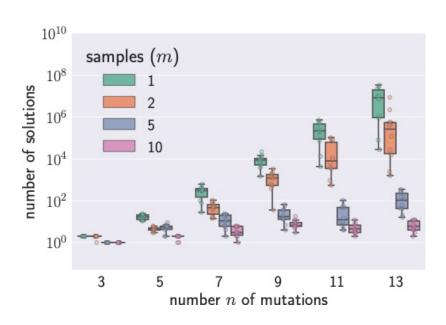
- Perfect Phylogeny Mixture (PPM) problem
- Combinatorial characterization of solutions
- #PPM: exact counting and uniform sampling

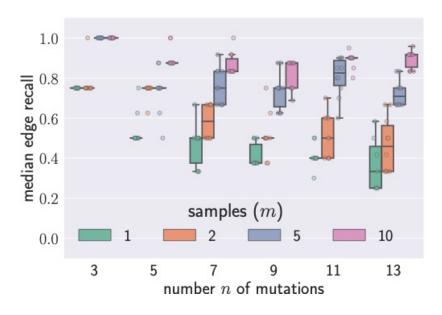
Simulation results:

- What contributes to non-uniqueness?
- How to reduce non-uniqueness?
- How does non-uniqueness affect current methods?

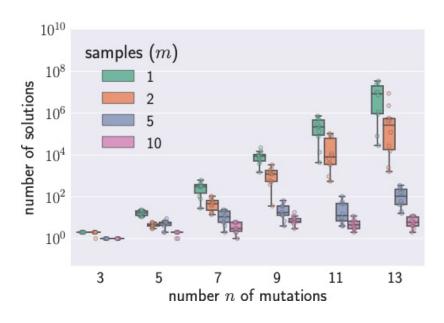
Dikshant Pradhan

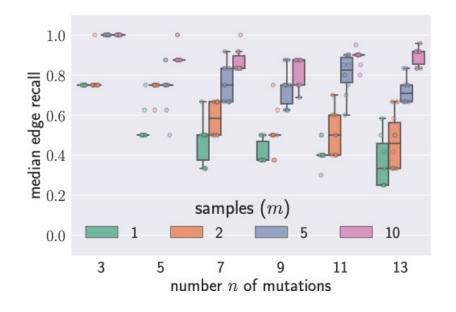
What Contributes to Non-uniqueness?

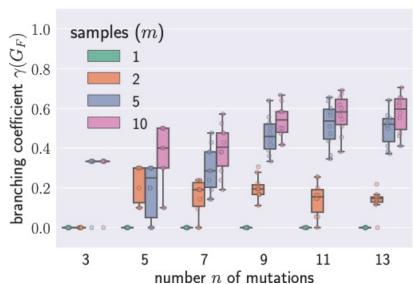


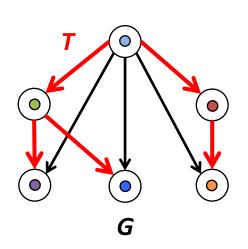


What Contributes to Non-uniqueness?

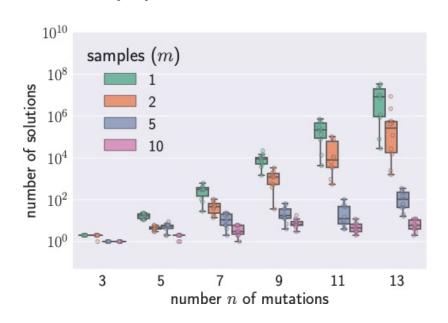


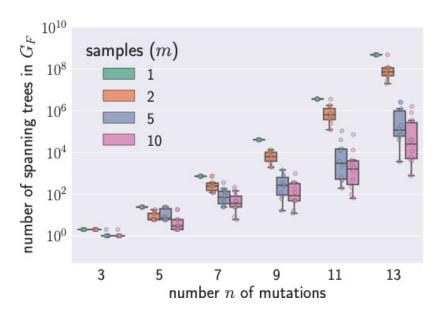


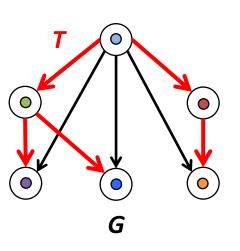




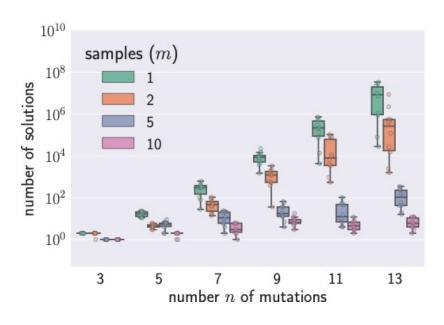
An Upper Bound for Number of Solutions

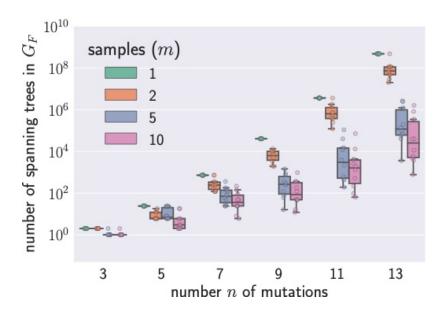


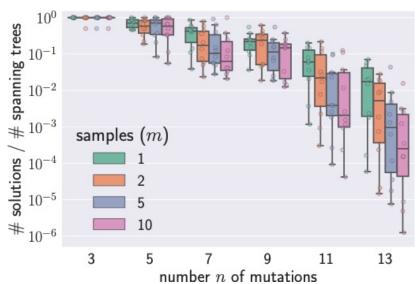


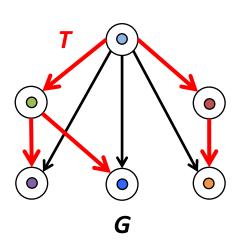


An Upper Bound for Number of Solutions

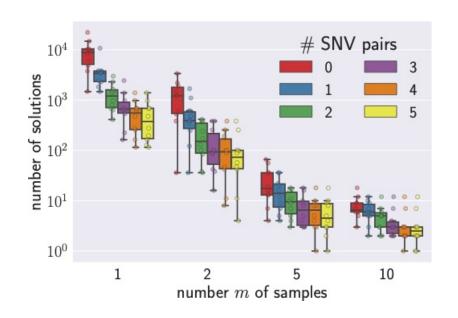


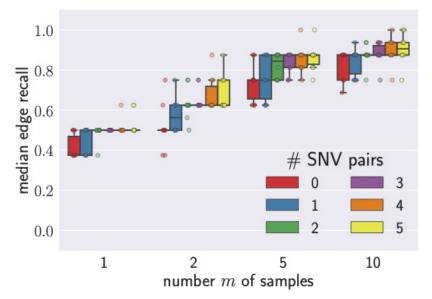


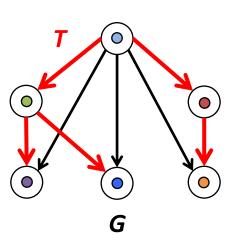




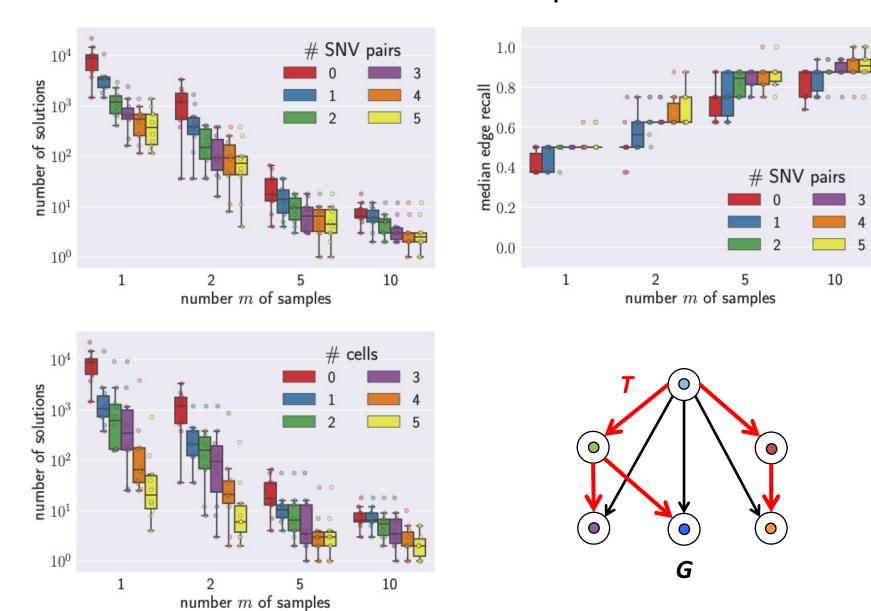
How to Reduce Non-Uniqueness?



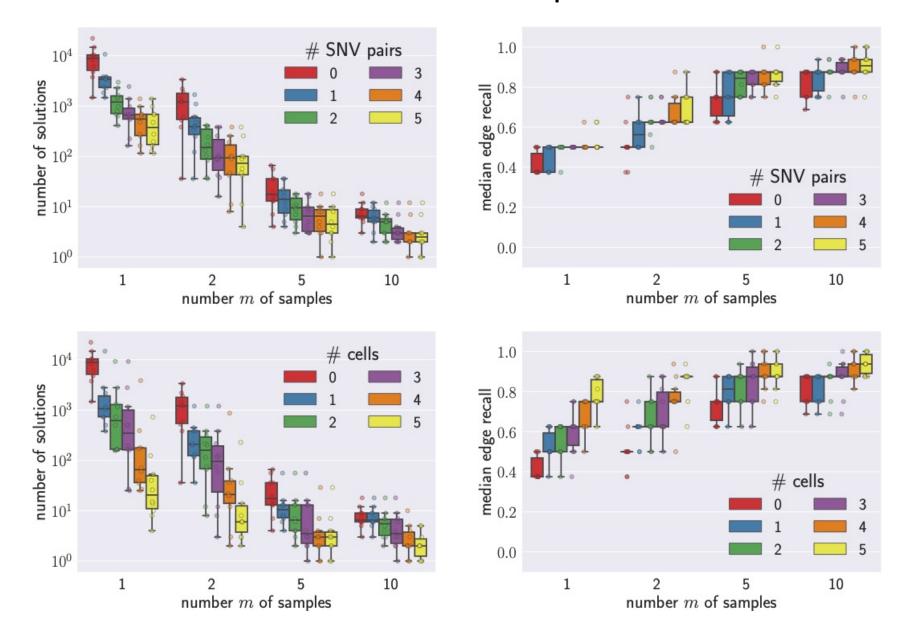




How to Reduce Non-Uniqueness?



How to Reduce Non-Uniqueness?

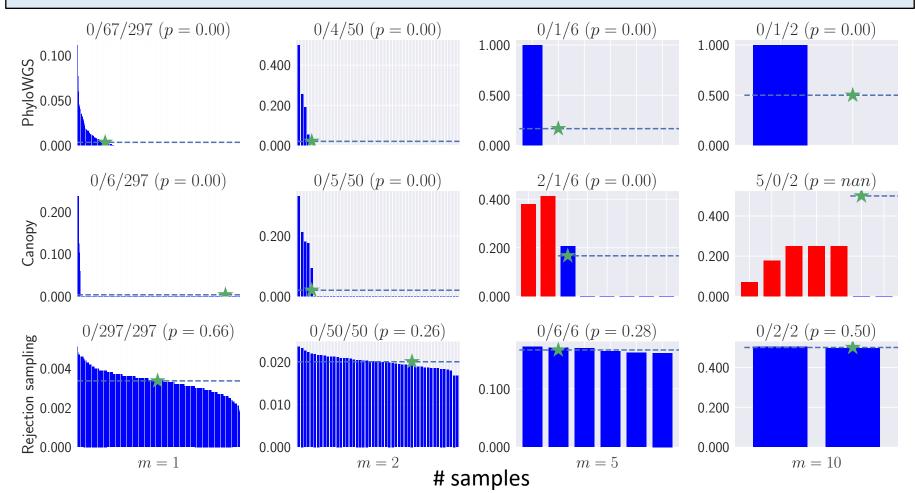


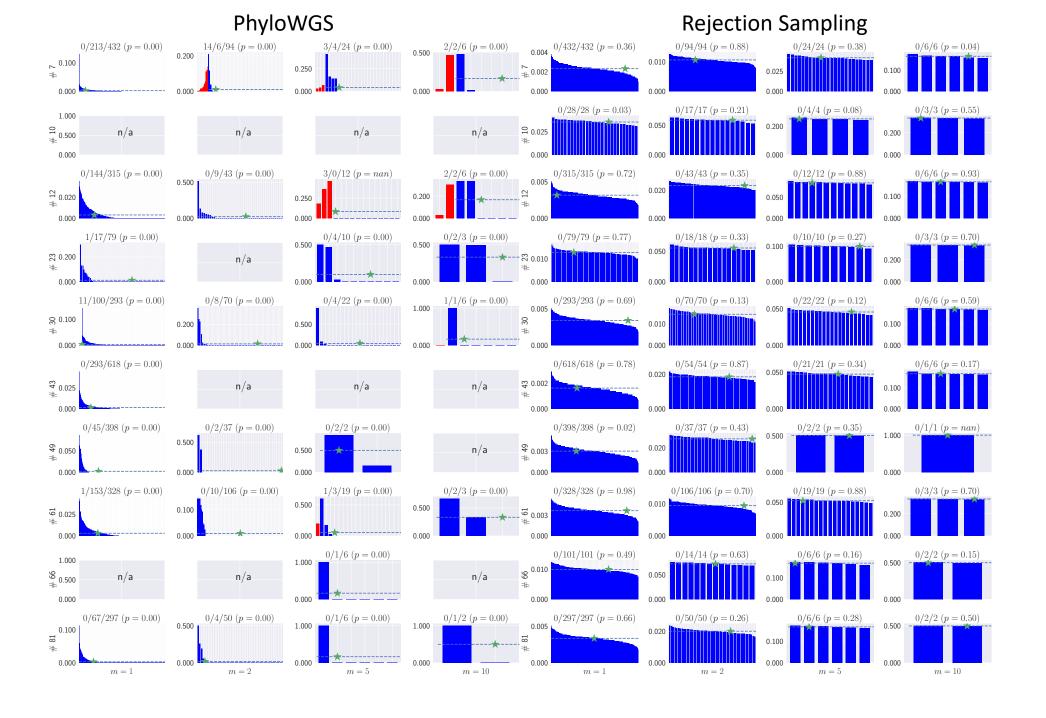
How Does Non-uniqueness affect Methods?

Two current MCMC methods using default parameters:

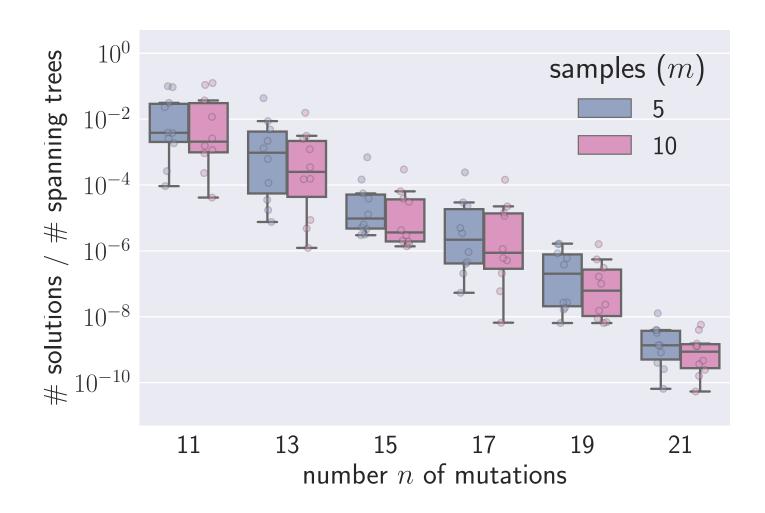
- PhyloWGS, Deshwar et al., Genom. Biol., 2015 [10,000 samples]
- Canopy, Jiang et al., PNAS, 2016

[~300 samples]

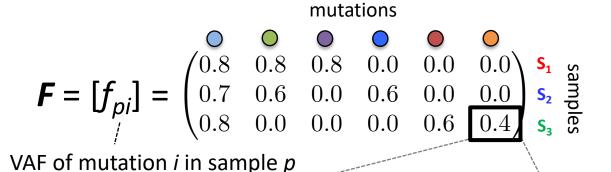




Rejection Sampling Does Not Scale



Probabilistic Model for Noisy Measurements



Variant allele frequency (VAF): 0.4

GCGACGT

GGACGTGA

GCGACGT

TACGTGGA

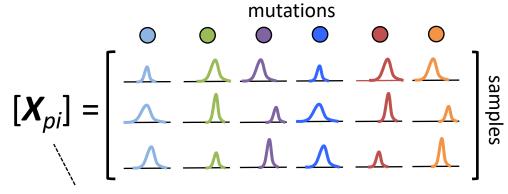
TGCGGACG

...GAGAAAGCTGCGGACGA...

reads with •

Uncertainty due to:

- (i) sequencing errors
- (ii) mapping errors (iii) sampling



VAF posterior distribution (beta) given the reads of mutation *i* in sample *p*

Probabilistic Model for Noisy Measurements

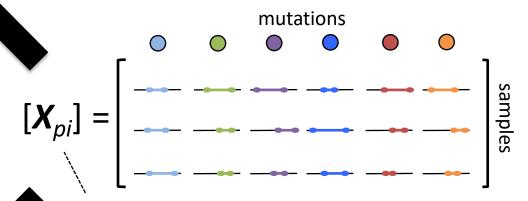
Interval PPM (I-PPM)

Given ${\it F}^-$ and ${\it F}^+$, find ${\it F}$, ${\it U}$ and ${\it B}$ such that ${\it F}$ = ${\it U}$ ${\it B}$ and $f_{pi}^- \le f_{pi} \le f_{pi}^+$ for all samples ${\it p}$ and mutations i

mutations

$$\mathbf{F} = [\mathbf{f}_{pi}^{+}] = \begin{pmatrix} 0.9 & 0.85 & 0.87 & 0.05 & 0.0 & 0.0 \\ 0.75 & 0.65 & 0.05 & 0.68 & 0.0 & 0.0 \\ 0.83 & 0.0 & 0.04 & 0.0 & 0.67 & 0.48 \end{pmatrix} \begin{array}{c} \mathbf{S}_{1} & \mathbf{S}_{2} & \mathbf{S}_{3} & \mathbf{S}_{3} & \mathbf{S}_{3} \\ \mathbf{S}_{3} & \mathbf{S}_{3} & \mathbf{S}_{3} & \mathbf{S}_{3} & \mathbf{S}_{3} & \mathbf{S}_{4} \\ \mathbf{S}_{3} & \mathbf{S}_{4} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf{S}_{5} \\ \mathbf{S}_{5} & \mathbf{S}_{5} & \mathbf$$

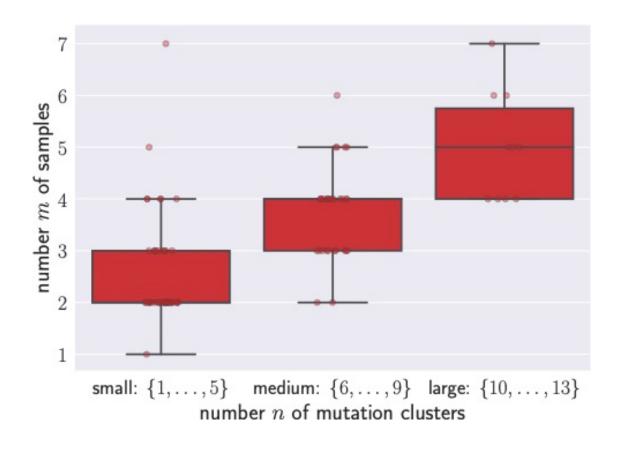
Consider $(1 - \alpha)$ confidence intervals:

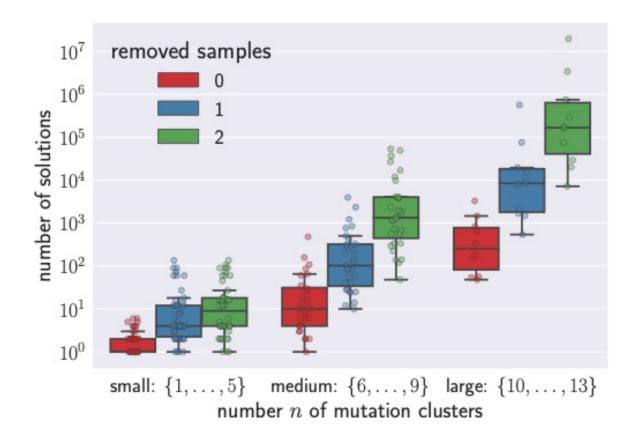


VAF posterior distribution (beta) given the reads of mutation i in sample p

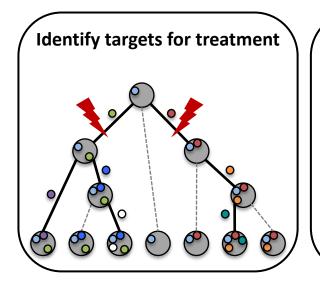
Real Data

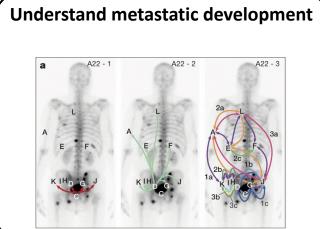
- Cohort of 100 lung cancers [Jamal-Hanjani, NEJM 2017]
- 90% confidence intervals

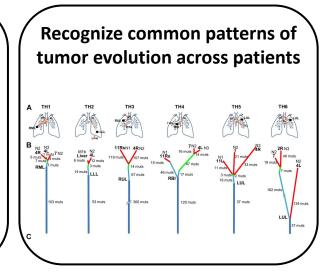




Challenges







Downstream analyses in cancer genomics critically rely on accurate tumor phylogeny inference

Challenge I

Novel algorithms that sample uniformly at random from the space of PPM solutions

Challenge II

Algorithms to accurately summarizing solution space (consensus trees)

Conclusion

Background and theory:

- Perfect Phylogeny Mixture (PPM) problem
- Combinatorial characterization of solutions
- #PPM: exact counting and uniform sampling

Simulation results:

- What contributes to non-uniqueness?
- How to reduce non-uniqueness?
- How does non-uniqueness affect current methods?

Summary of Lectures 1, 2 and 3

- DNA, RNA and proteins are sequences
 - Central dogma of molecular biology: DNA -> RNA -> protein
- Problem != algorithm
- Key challenge in computational biology is translating a biological problem into a computational problem
- Cancer is a genetic disease caused by somatic mutations
- Inter-tumor heterogeneity and intra-tumor heterogeneity:
 - Not only is every tumor different, but so is every tumor cell...
- Non-uniqueness of solutions in phylogeny reconstruction from bulk DNA samples