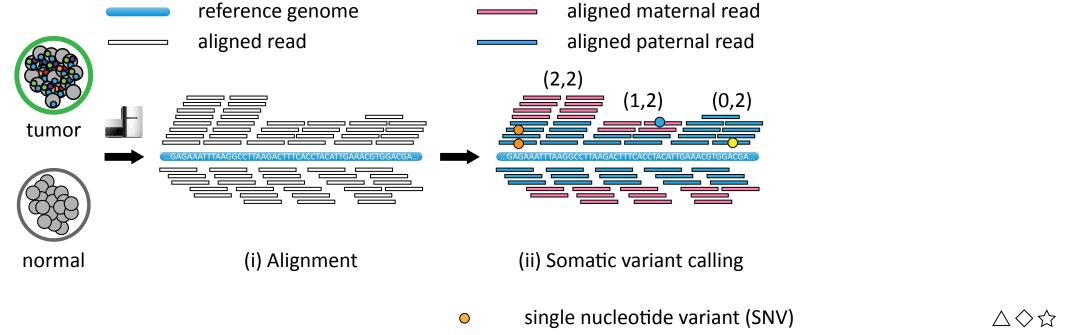
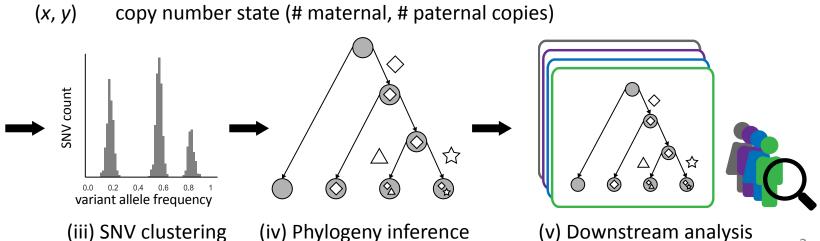
CS 598MEB Computational Cancer Biology

Lecture 13

Mohammed El-Kebir February 26, 2019

Cancer Phylogenetics Pipeline

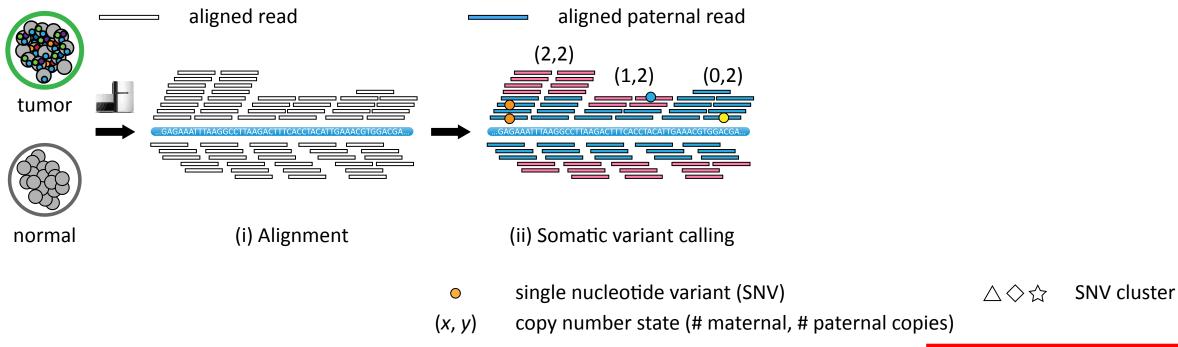




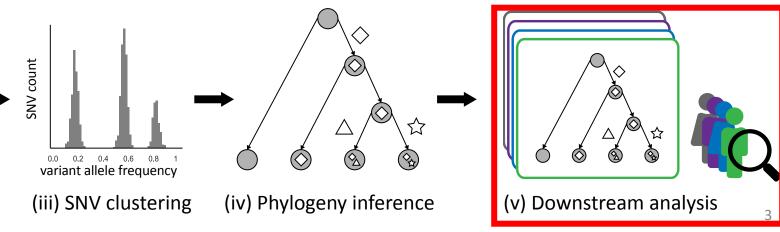
SNV cluster

Cancer Phylogenetics Pipeline

reference genome



aligned maternal read



Outline

- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants

Formulating a combinatorial problem Interpreting Analyzing solutions and complexity & **Biological** validating the combinatorial question algorithm structure Designing an algorithm

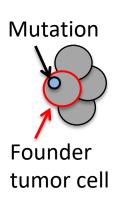
Reading:

- M. El-Kebir, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50:718-726, 2018.
- M. El-Kebir[†]. Parsimonious Migration History Problem: Complexity and Algorithms. WABI 2018, Helsinki, Finland, August 20-22, 2018.

Tumorigenesis: (i) Cell Mutation

Clonal Theory of Cancer

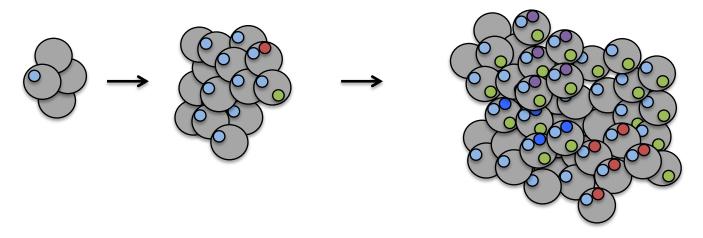
[Nowell, 1976]



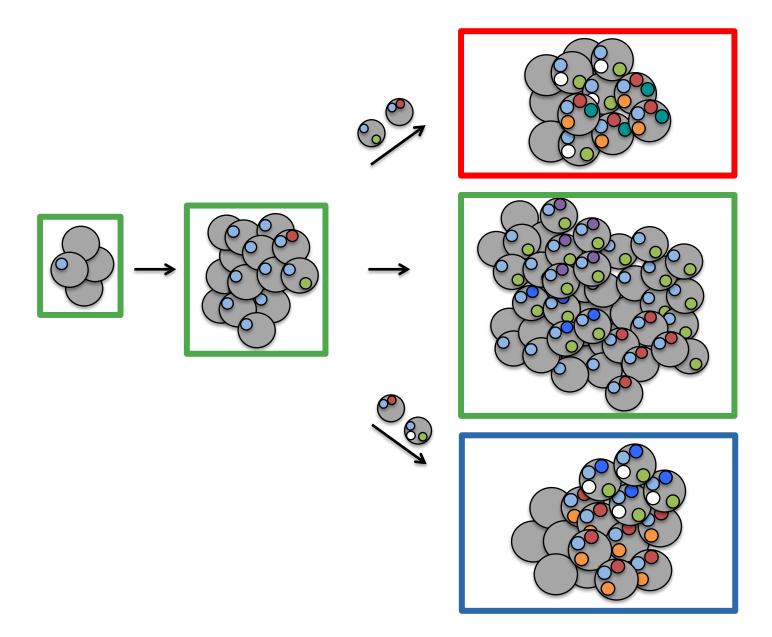
Tumorigenesis: (i) Cell Mutation, (ii) Cell Division

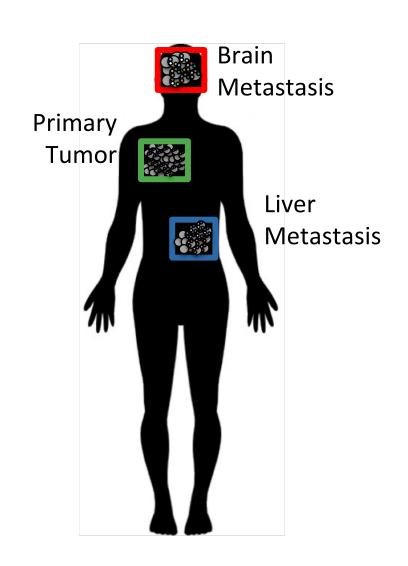
Clonal Theory of Cancer

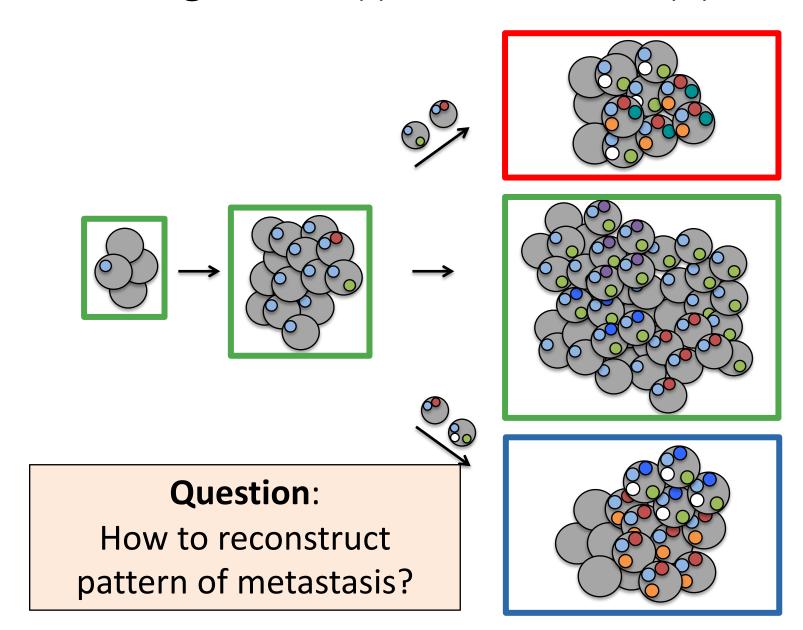
[Nowell, 1976]

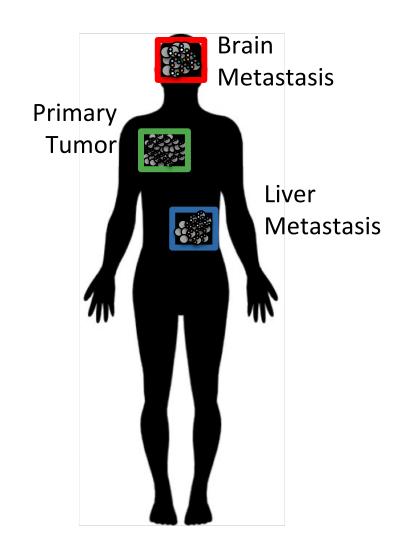


Heterogeneous Tumor

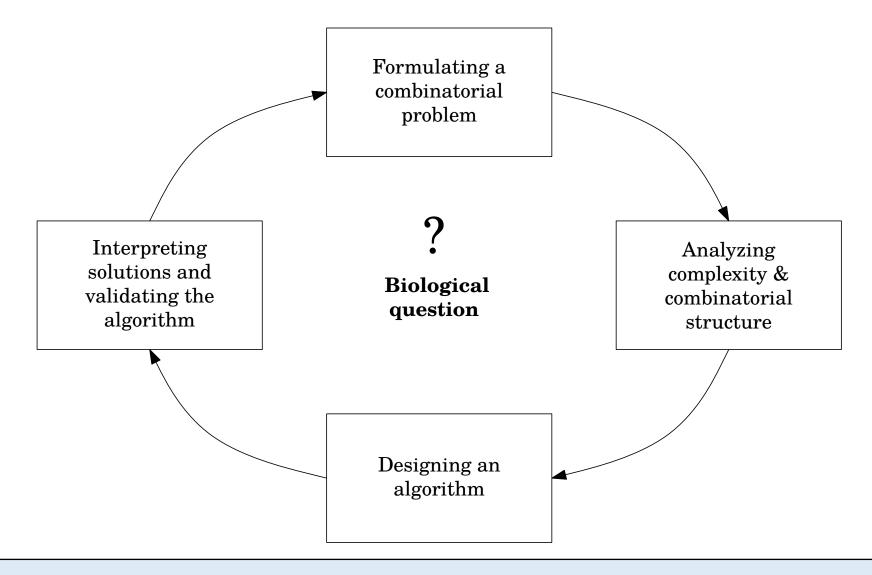




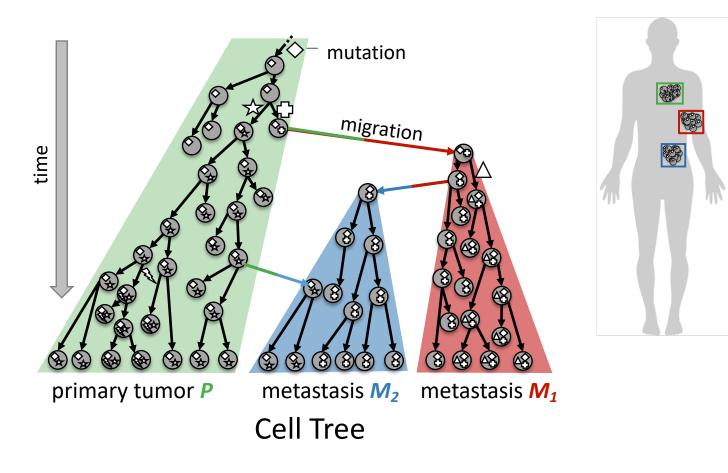


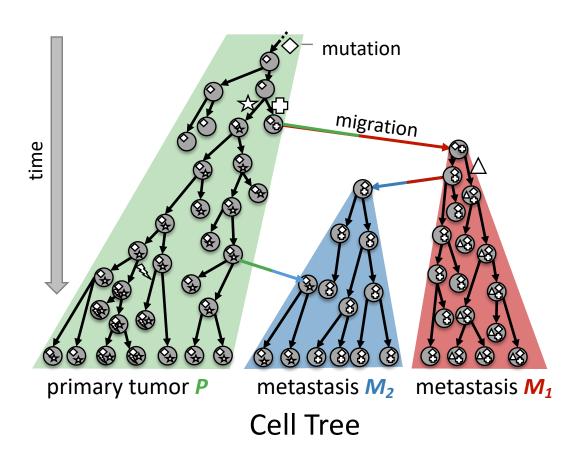


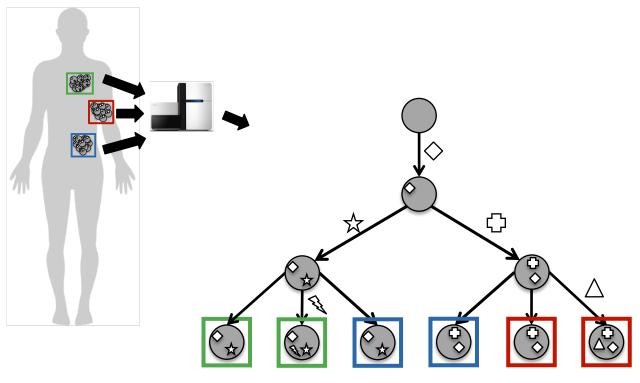
Key Challenge in Computational Biology



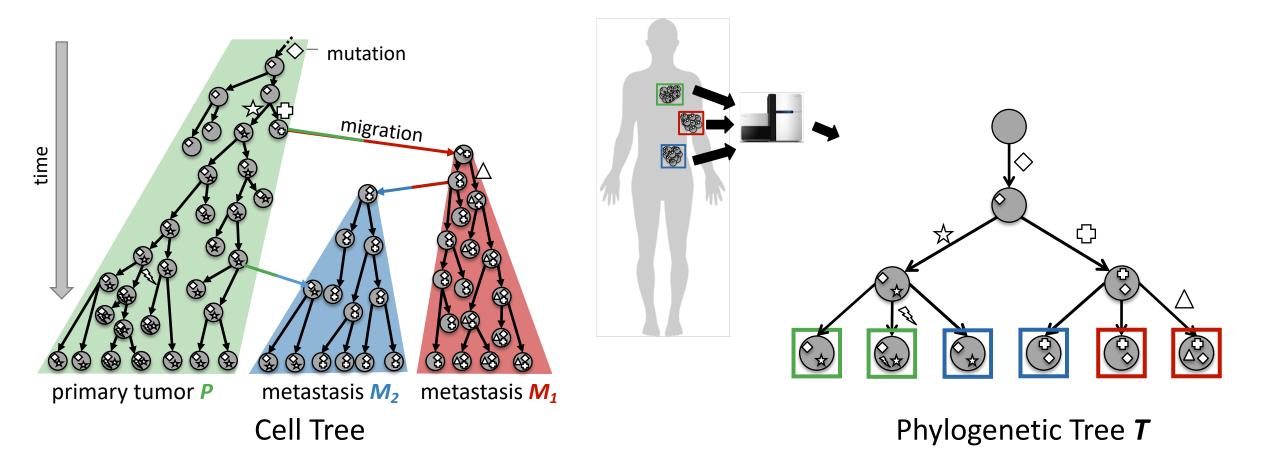
Translating a biological problem into computer science



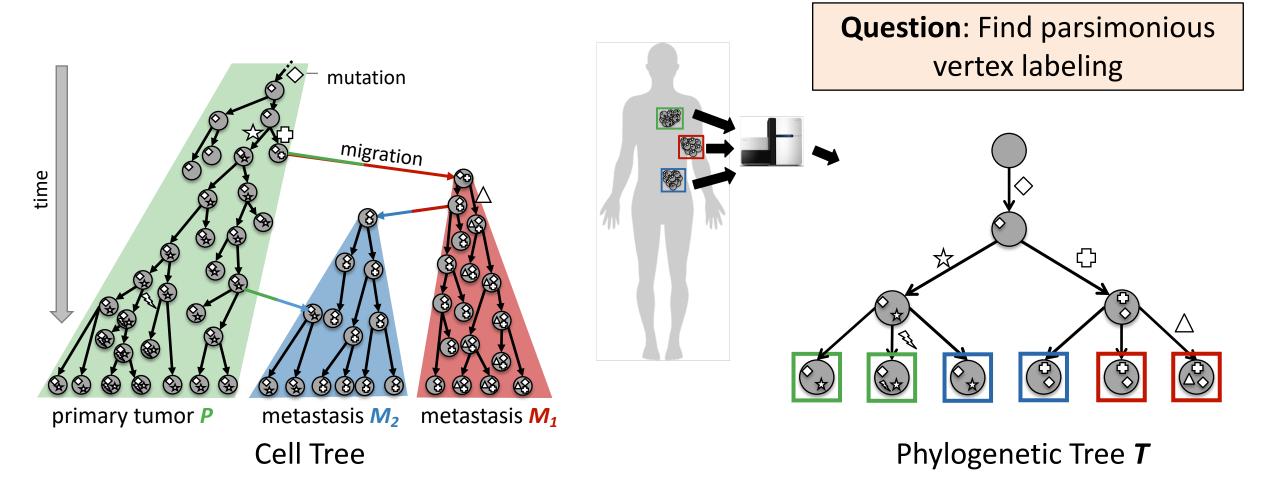




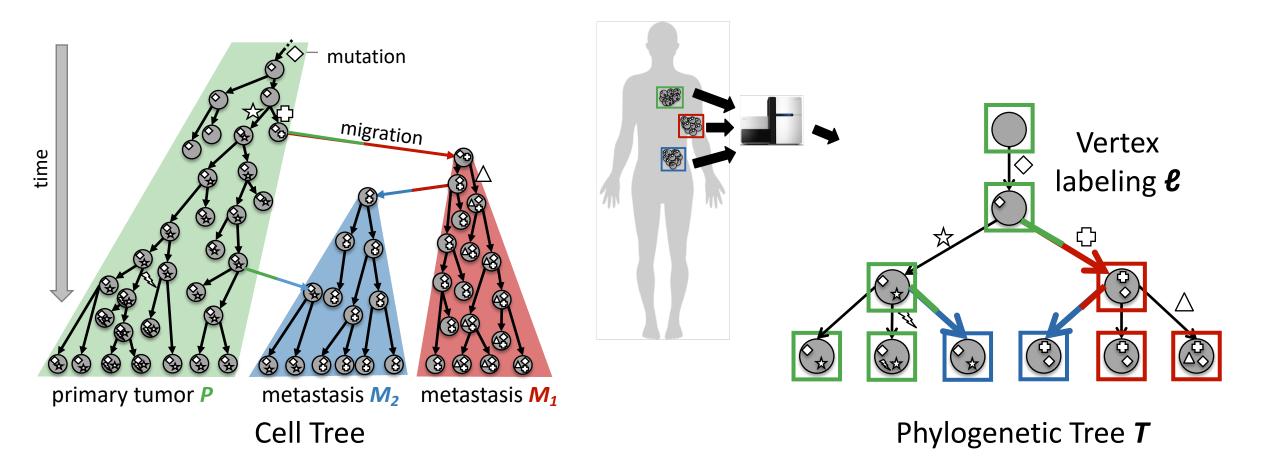
Phylogenetic Tree *T*



Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *ℓ* with fewest migrations



Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *ℓ* with fewest migrations



Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *ℓ* with fewest migrations

Outline

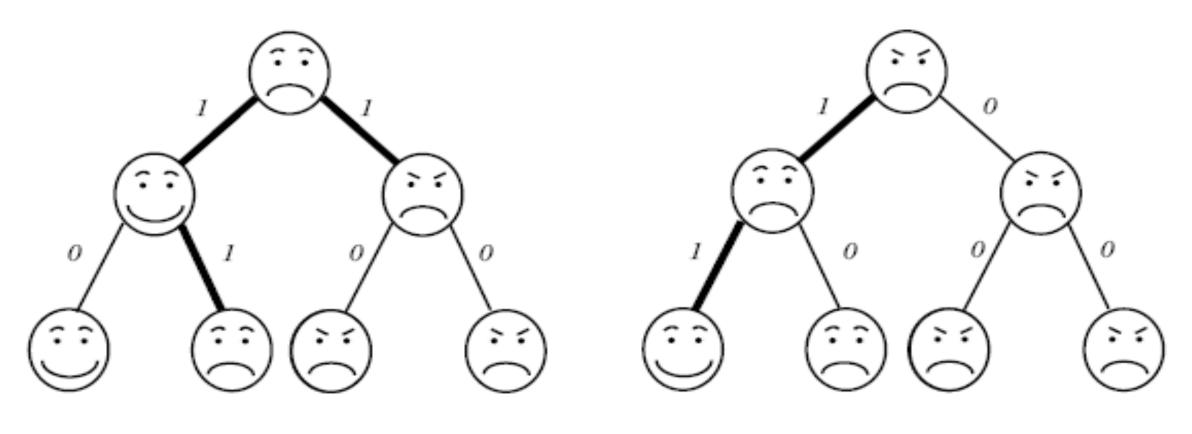
- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants

Formulating a combinatorial problem Interpreting Analyzing solutions and complexity & **Biological** validating the combinatorial question algorithm structure Designing an algorithm

Reading:

- M. El-Kebir, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50:718-726, 2018.
- M. El-Kebir[†]. Parsimonious Migration History Problem: Complexity and Algorithms. WABI 2018, Helsinki, Finland, August 20-22, 2018.

Character-Based Phylogeny Reconstruction: Criterion



(a) Parsimony Score=3

(b) Parsimony Score=2

Parsimony: minimize number of changes on edges of tree

A Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

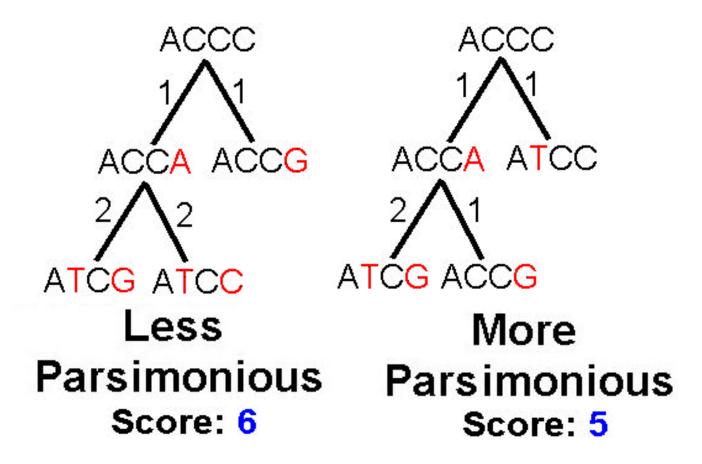
Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?

Small Maximum Parsimony Phylogeny Problem



Key observations: (1) Characters can be solved independently. (2) Optimal substructure in subtrees.

Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:

Given rooted tree T whose leaves are labeled by $\sigma: L(T) \to \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:

Given rooted tree T whose leaves are labeled by $\sigma: L(T) \to \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Let $\mu(v, s)$ be the minimum number of mutations in the subtree rooted at v when assigning state s to v.

Let $\delta(v)$ be the set of children of v.

Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:

Given rooted tree T whose leaves are labeled by $\sigma: L(T) \to \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Let $\mu(v,s)$ be the minimum number of mutations in the subtree rooted at vwhen assigning state s to v.

$$c(s,t) = \begin{cases} 0, & \text{if } s = t \\ 1, & \text{if } s \neq t, \end{cases}$$

Let $\delta(v)$ be the set of children of v.

$$\mu(v,s) = \min \begin{cases} \infty, & \text{if } v \in L(T) \text{ and } s \neq \sigma(v), \\ 0, & \text{if } v \in L(T) \text{ and } s = \sigma(v), \\ \sum_{w \in \delta(v)} \min_{t \in \Sigma} \{c(s,t) + \mu(w,t)\}, & \text{if } v \notin L(T). \end{cases}$$

Filling out DP Table and Traceback

Fill m and
$$\mu$$

Fill T, v, δ, Σ

Fill T, v, δ, Σ

Fill T, v, δ, Σ

O($w | \Sigma |^2$)

if $v \in L(T)$ than

for $s \in \Sigma$

if $s = \delta(v)$ than

 $\mu(v,s) = 0$

else

 $\mu(v,s) = 0$

else

Fill T, v, δ, Σ
 $\mu(v,s) = 0$
 $\mu(v,s) = 0$

For $w \in \delta(v)$
 $\mu(v,s) = 0$

For $w \in \delta(v)$
 $\mu(v,s) = 0$
 $\mu(v,s) = 0$
 $\mu(v,s) = 0$

Bach + (ace
$$(T, v, \mu)$$
)

if $v = r(T)$
 $S(r(T)) = arg win $PM(r(T), S)$

Se S

Observe a bethe proved of v and let S be two states

 $S(v) = arg win $S(S, t) + \mu(v, t)$
 $S(v) = arg win $S(S, t) + \mu(v, t)$
 $S(v) = arg win $S(S, t) + \mu(v, t)$
 $S(v) = arg win $S(S, t)$
 $S(v) = arg win $S(v)$
 $S(v) = arg win$$$

Let r(T) be the root vertex

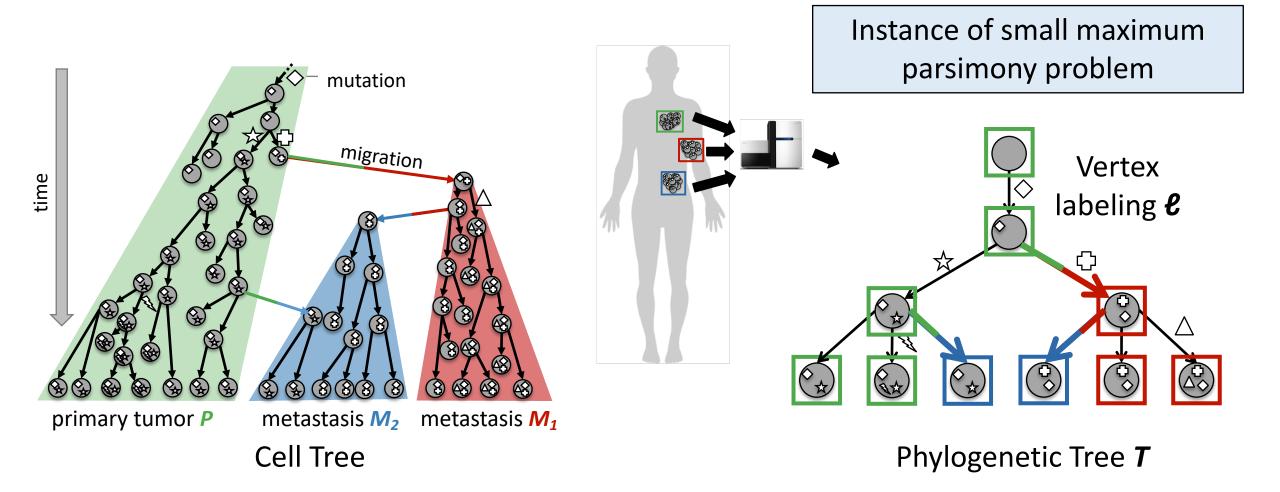
Outline

- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants

Formulating a combinatorial problem Interpreting Analyzing solutions and complexity & **Biological** validating the combinatorial question algorithm structure Designing an algorithm

Reading:

- M. El-Kebir, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50:718-726, 2018.
- M. El-Kebir[†]. Parsimonious Migration History Problem: Complexity and Algorithms. WABI 2018, Helsinki, Finland, August 20-22, 2018.



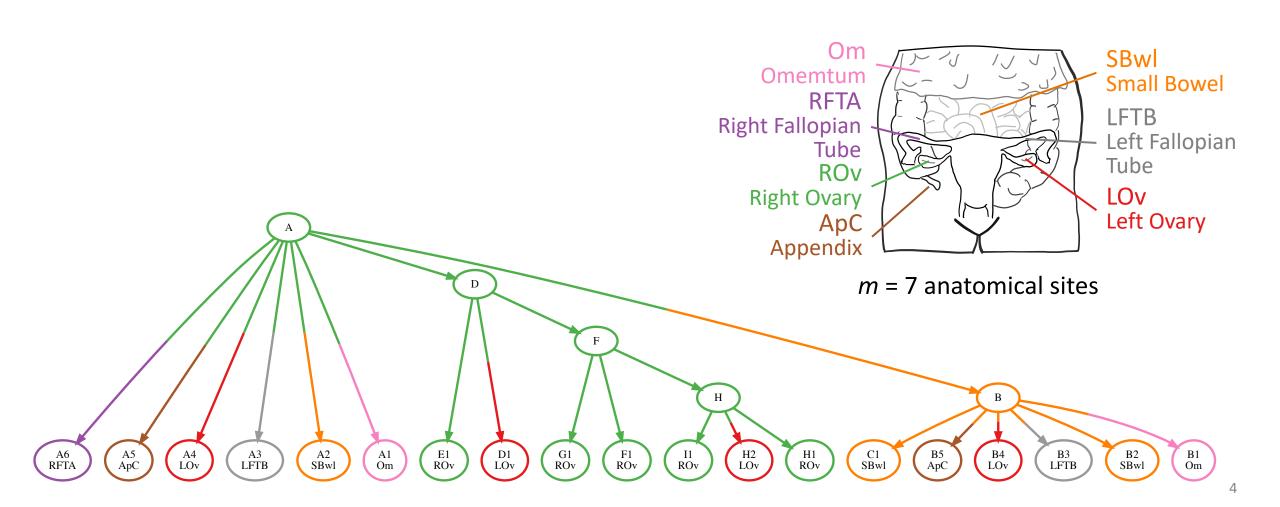
Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *ℓ* with fewest migrations

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics, 123(3), 603-613.

Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nature Genetics*.

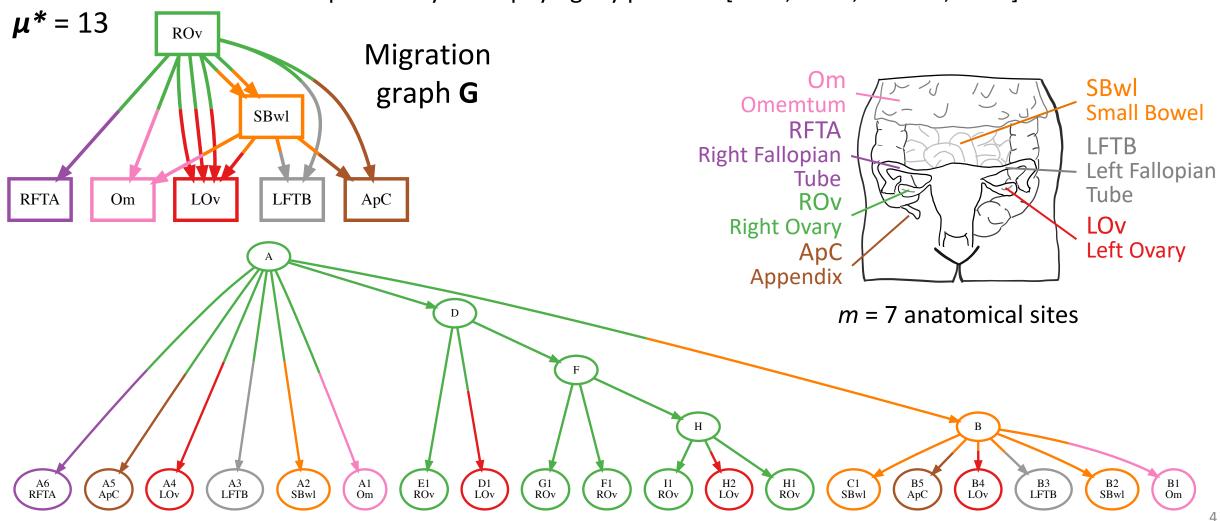
• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



Minimum Migration Analysis in Ovarian Cancer

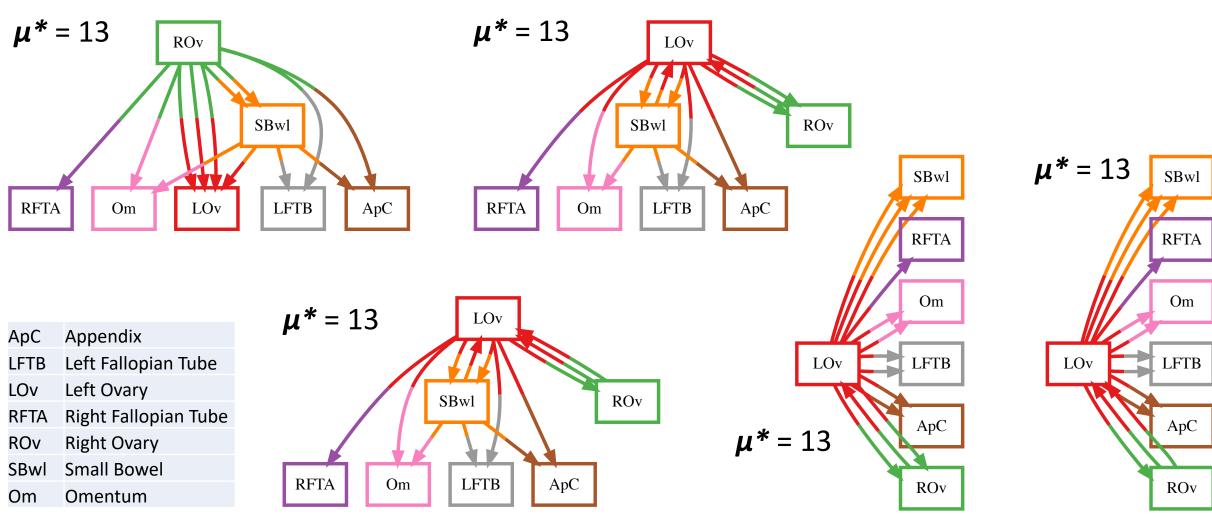
McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nature Genetics*.

• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



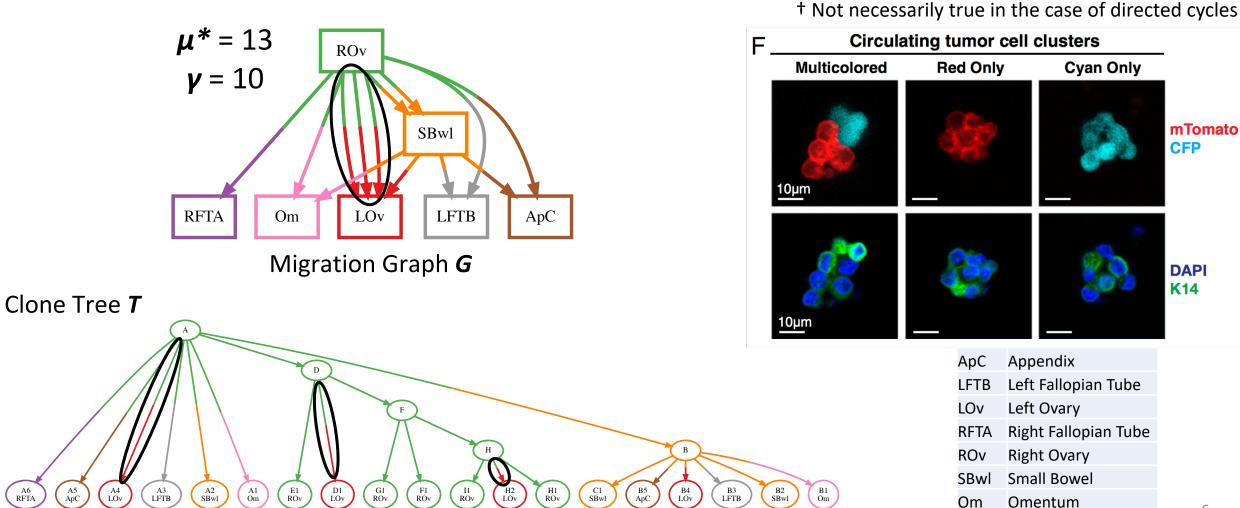
Minimum Migration History is *Not* Unique

• Enumerate all minimum-migration vertex labelings in the backtrace step



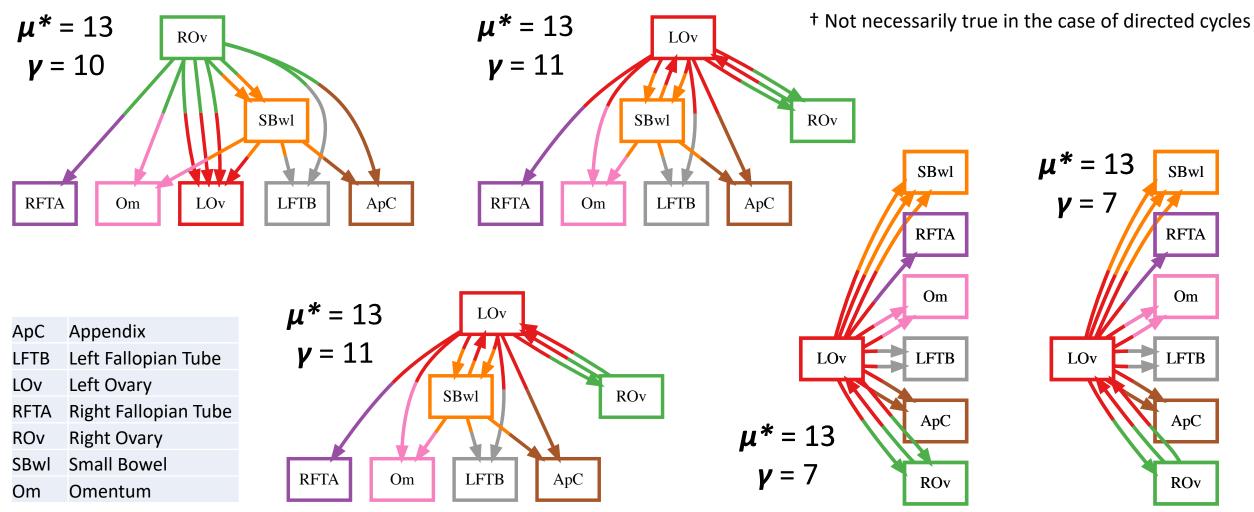
Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G^{\dagger}

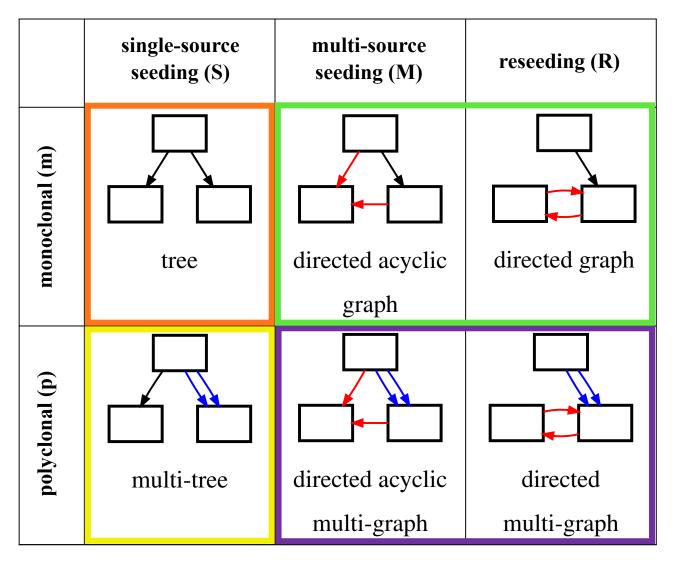


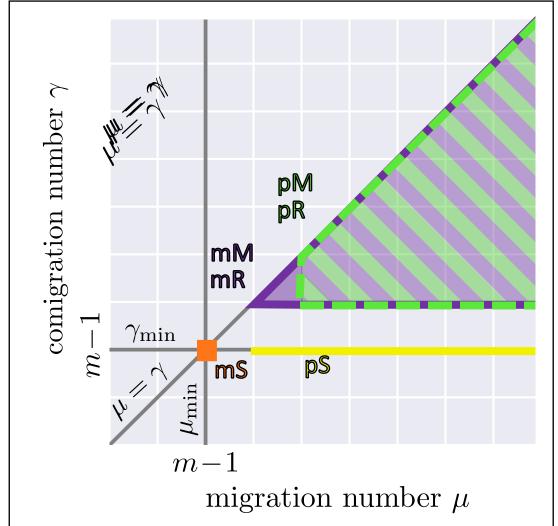
Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G^{\dagger}



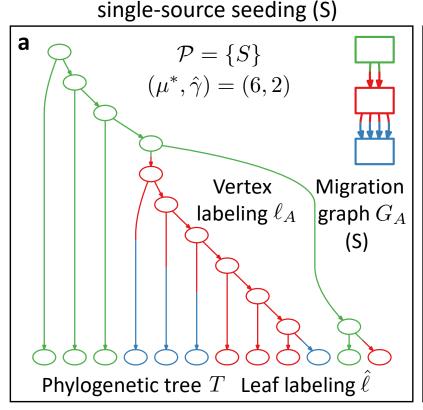
Tradeoffs between Migrations, Comigrations and Migration Pattern

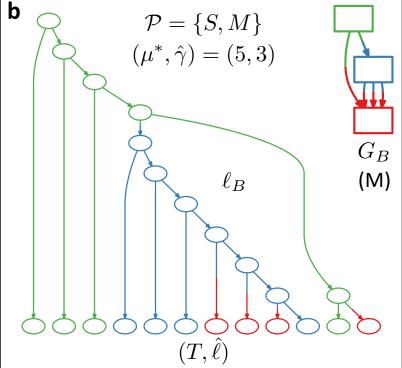




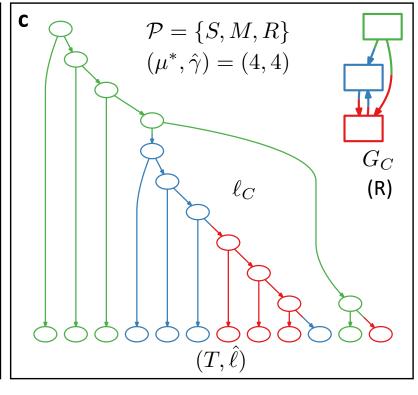
Constrained Multi-objective Optimization Problem

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\widehat{\gamma}(T)$.





reseeding (R)



El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. *Nature Genetics*, 50(5), 718–726.

Outline

- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants

Formulating a combinatorial problem Interpreting Analyzing solutions and complexity & **Biological** validating the combinatorial question algorithm structure Designing an algorithm

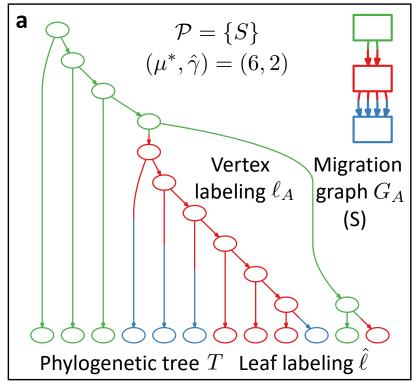
Reading:

- M. El-Kebir, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50:718-726, 2018.
- M. El-Kebir[†]. Parsimonious Migration History Problem: Complexity and Algorithms. WABI 2018, Helsinki, Finland, August 20-22, 2018.

Results [El-Kebir, WABI 2018]

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\widehat{\gamma}(T)$.

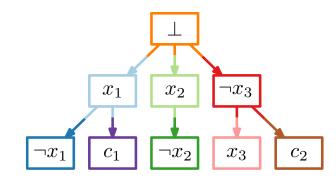
single-source seeding (S)



Theorem 1: PMH is NP-hard when $\mathcal{P} = \{S\}$

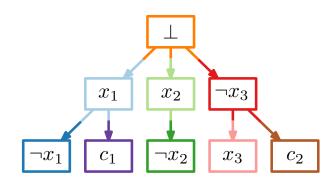
Theorem 2: PMH is fixed parameter tractable in the number m of locations when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \bigwedge_{i=1}^k (y_{i,1} \vee y_{i,2} \vee y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\phi : [n] \to \{0,1\}$ satisfying φ



$$\Sigma = \{x_1, \dots, x_n, \neg x_1, \dots, \neg x_n, c_1, \dots c_k, \bot\}$$

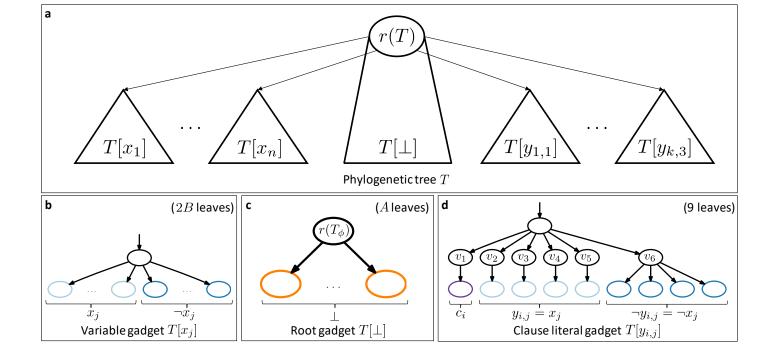
3-SAT: Given $\varphi = \bigwedge_{i=1}^k (y_{i,1} \vee y_{i,2} \vee y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\phi : [n] \to \{0,1\}$ satisfying φ



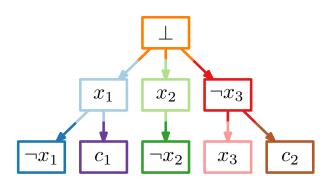
$$\Sigma = \{x_1, \dots, x_n, \neg x_1, \dots, \neg x_n, c_1, \dots c_k, \bot\}$$

Three ideas:

- 1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
- 2. Ensure that $\ell^*(r(T)) = \bot$
- 3. Ensure that ϕ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment



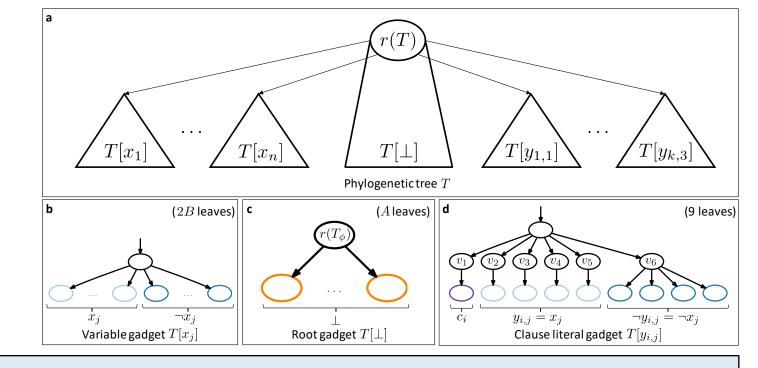
3-SAT: Given $\varphi = \bigwedge_{i=1}^k (y_{i,1} \lor y_{i,2} \lor y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\phi : [n] \to \{0,1\}$ satisfying φ



$$\Sigma = \{x_1, \dots, x_n, \neg x_1, \dots, \neg x_n, c_1, \dots c_k, \bot\}$$

Three ideas:

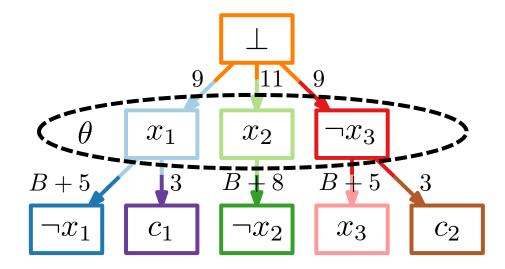
- 1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
- 2. Ensure that $\ell^*(r(T)) = \bot$
- 3. Ensure that ϕ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment



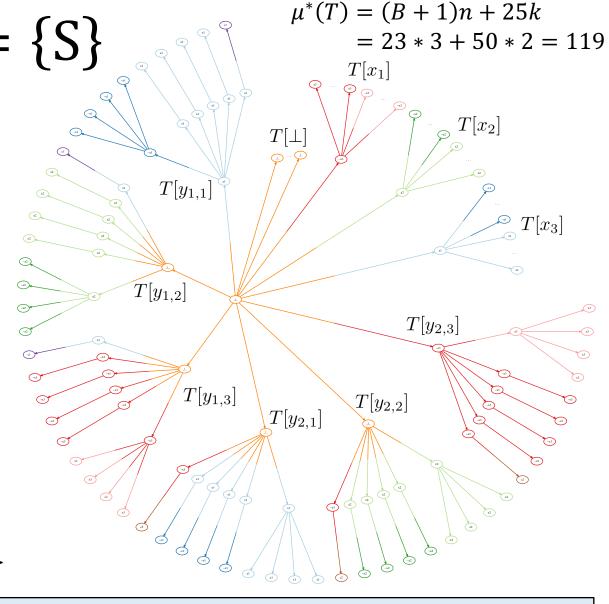
Lemma: Let B>10k+1 and A>2Bn+27k. Then, ϕ is satisfiable if and only if $\mu^*(T)=(B+1)n+25k$

$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1, \neg x_2, \neg x_3)$$

$$k = 2, n = 3$$
 $B = 10k + 2 = 22$
 $A = 2Bn + 27k + 1 = 187$

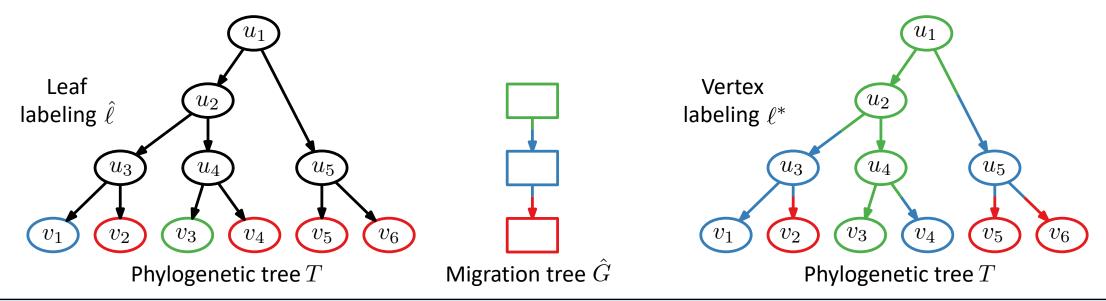


$$\Sigma = \{x_1, x_2, x_3, \neg x_1, \neg x_2, \neg x_3, c_1, c_2, \bot\}$$



Lemma: Let B>10k+1 and A>2Bn+27k. Then, ϕ is satisfiable if and only if $\mu^*(T)=(B+1)n+25k$

PMH is FPT in number m of locations when $\mathcal{P} = \{S\}$



Lemma: If there exists labeling ℓ consistent with \widehat{G} then

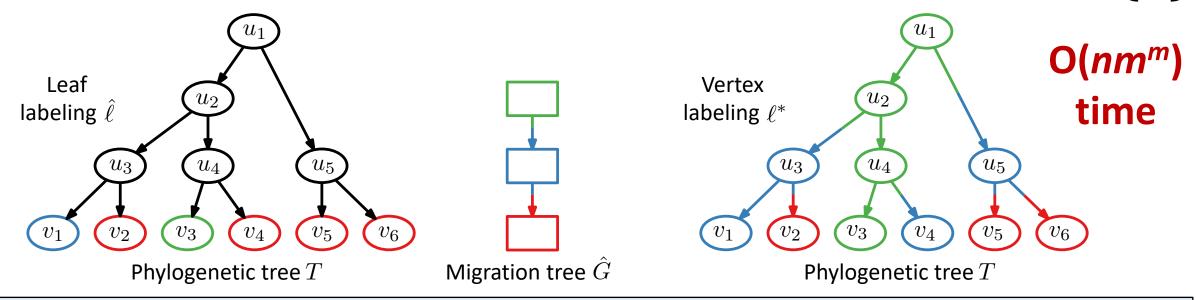
$$d_T(u,v) \ge d_{\hat{G}}(\operatorname{lca}_{\hat{G}}(u),\hat{\ell}(v))$$
 $\forall u,v \in V(T) \text{ such that } u \preceq_T v.$ (1)

$$\ell^*(v) = \begin{cases} \operatorname{LCA}_{\hat{G}}(r(T)), & \text{if } v = r(T), \\ \sigma(\ell^*(\pi(v)), \operatorname{LCA}_{\hat{G}}(v)), & \text{if } v \neq r(T), \end{cases}$$

where $\sigma(s,t) = s$ if s = t and otherwise $\sigma(s,t)$ is the unique child of s that lies on the path from s to t in \hat{G} .

Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \widehat{G} .

PMH is FPT in number m of locations when $\mathcal{P} = \{S\}$



Lemma: If there exists labeling ℓ consistent with \widehat{G} then

$$d_T(u,v) \ge d_{\hat{G}}(\operatorname{lca}_{\hat{G}}(u),\hat{\ell}(v))$$
 $\forall u,v \in V(T) \text{ such that } u \preceq_T v.$ (1)

$$\ell^*(v) = \begin{cases} \operatorname{LCA}_{\hat{G}}(r(T)), & \text{if } v = r(T), \\ \sigma(\ell^*(\pi(v)), \operatorname{LCA}_{\hat{G}}(v)), & \text{if } v \neq r(T), \end{cases}$$

where $\sigma(s,t) = s$ if s = t and otherwise $\sigma(s,t)$ is the unique child of s that lies on the path from s to t in \hat{G} .

Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \widehat{G} .

Outline

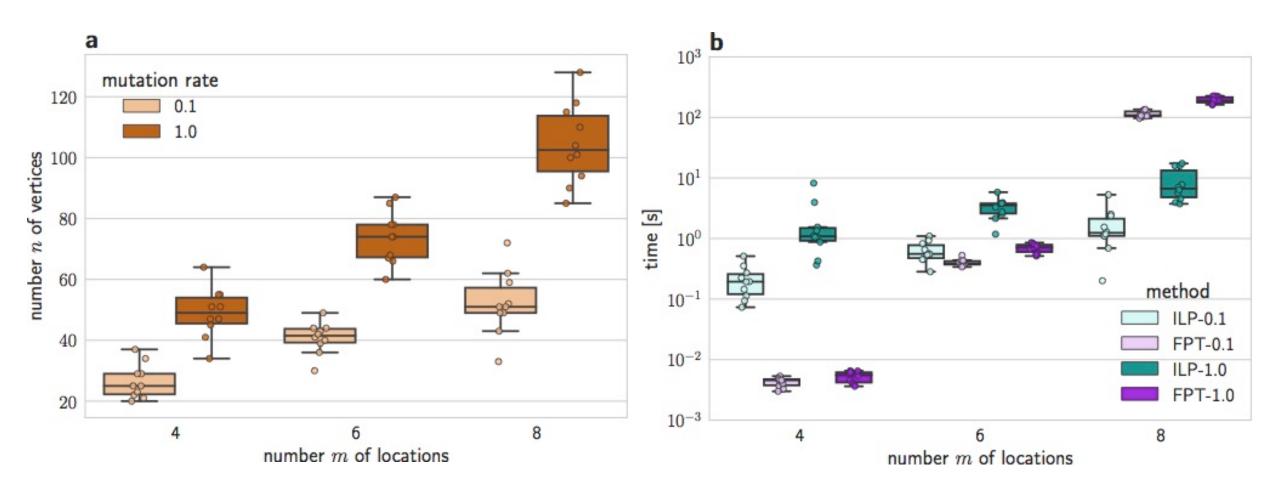
- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants

Formulating a combinatorial problem Interpreting Analyzing solutions and complexity & **Biological** validating the combinatorial question algorithm structure Designing an algorithm

Reading:

- M. El-Kebir, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50:718-726, 2018.
- M. El-Kebir[†]. Parsimonious Migration History Problem: Complexity and Algorithms. WABI 2018, Helsinki, Finland, August 20-22, 2018.

Simulations



Available on: https://github.com/elkebir-group/PMH-S

Outline

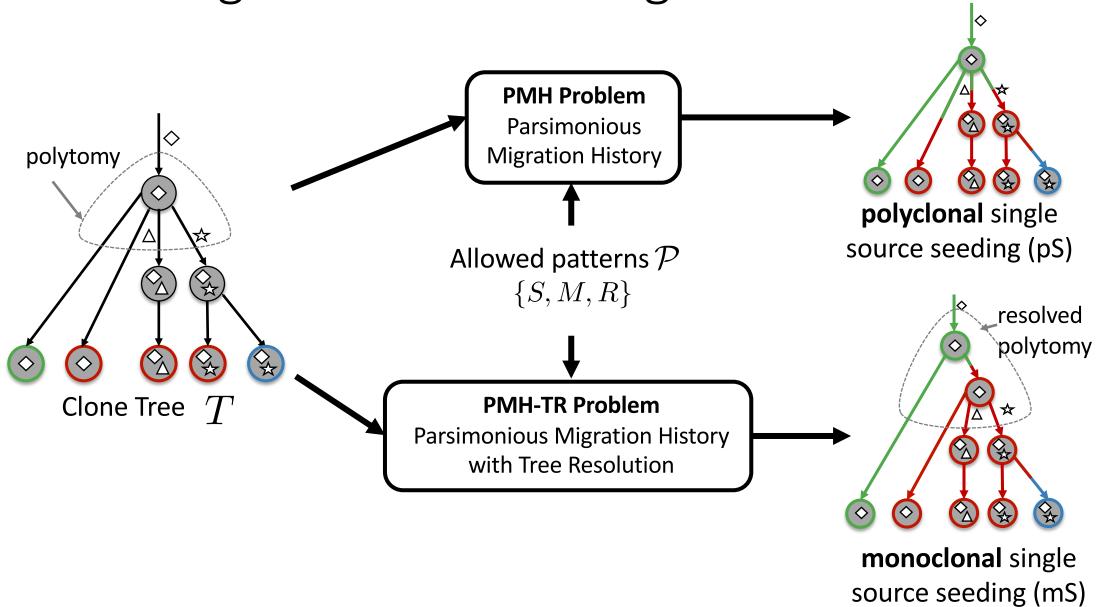
- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants

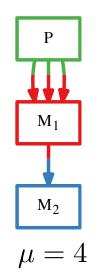
Formulating a combinatorial problem Interpreting Analyzing solutions and complexity & **Biological** validating the combinatorial question algorithm structure Designing an algorithm

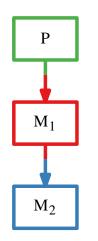
Reading:

- M. El-Kebir, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50:718-726, 2018.
- M. El-Kebir[†]. Parsimonious Migration History Problem: Complexity and Algorithms. WABI 2018, Helsinki, Finland, August 20-22, 2018.

Resolving Clone Tree Ambiguities

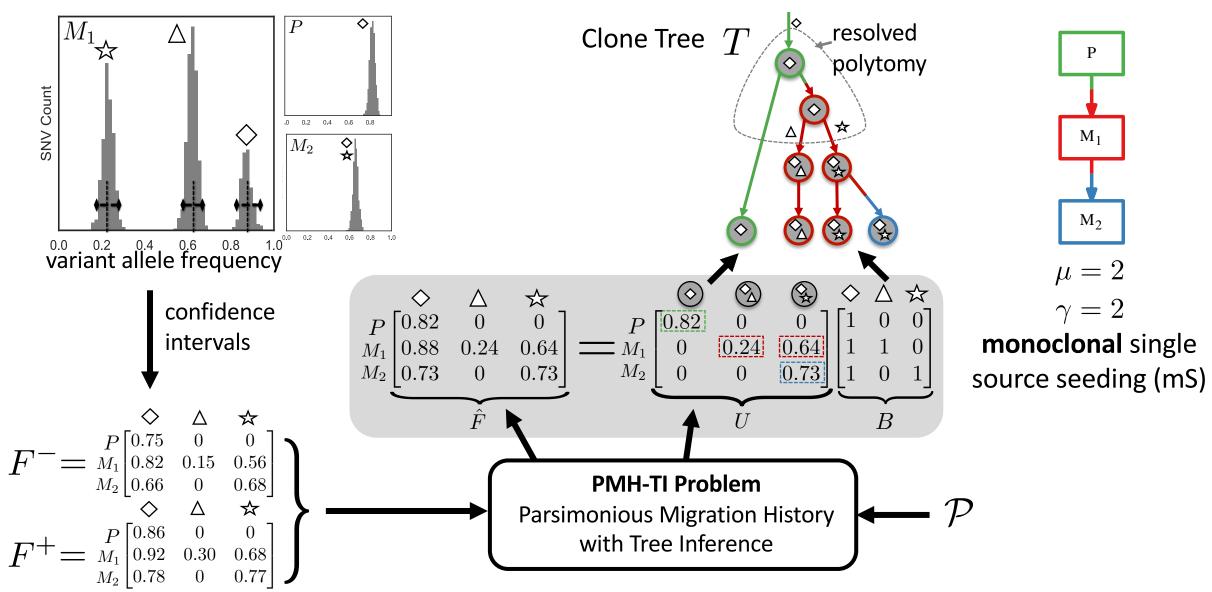


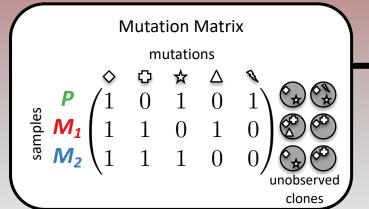




 $\mu = 2$

Resolving Clone Tree Ambiguities

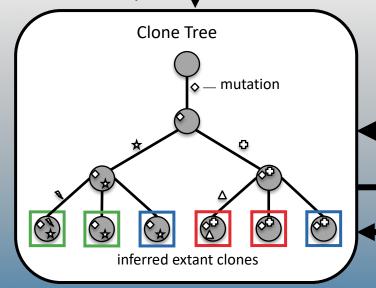




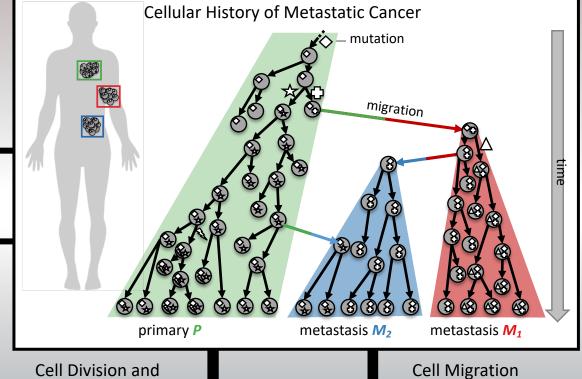
Sequencing and Mutation Calling

Tumor

Phylogenetic Techniques



Standard Phylogenetic Techniques



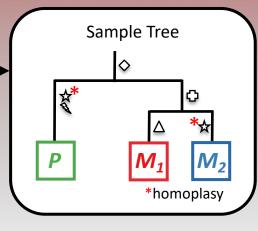
MACHINA

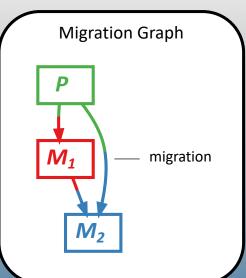
Mutation History

Cell Migration History

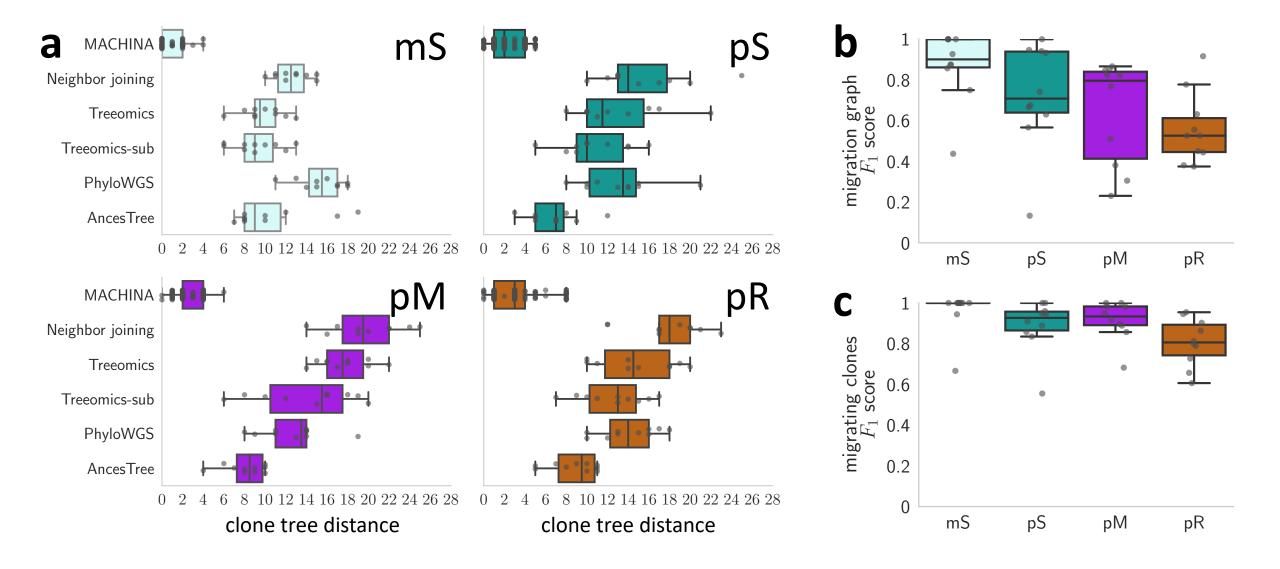
Label ancestral vertices by anatomical sites

Resolve clone tree ambiguities

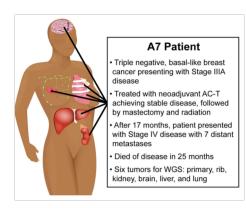




MACHINA accurately infers clone trees and migration histories on simulated data



Applying MACHINA to Metastatic Breast Cancer



Hoadley et al.
Tumor Evolution in Two
Patients with Basal-like
Breast Cancer: A
Retrospective
Genomics Study of
Multiple Metastases.
PLOS Med, 13(12) 2016

