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Overview

• What is the MWCS problem?
• How can this be formulated as an MIP?
• Edges
• Cycles
• Cuts

• How can we evaluate which formulation is best?
• Theoretical 
• Empirical



MWCS Problem
What it is and why we care



MWCS Problem

• Input:
• Graph ! = ($, &)
• Node weights ( ∶ $ → ℚ

• Output:
• A connected subgraph , = $-, &- of ! such that

max 1
2∈45

(2



Directed MWCS Problem

• Input:
• Directed graph ! = ($, &)
• Node weights ( ∶ $ → ℚ

• Output:
• A connected subgraph , = $-, &- of ! with some root 

node that can reach every other node in , such that
max 1

2∈45
(2



Directed MWCT Problem

• Input:
• Directed graph ! = ($, &)
• Node weights ( ∶ $ → ℚ

• Output:
• A tree , = $-, &- of ! with some root node that can 

reach every other node in , such that
max 1

2∈45
(2



MWCS Problem Family

All equivalent to searching for a 
maximum node-weighted tree



MWCS Problem Applications



Protein-Protein Interac-ons



MIP Formula,ons
We have op)ons



MIP Formulations

2. Objective

3. Constraints
1. Variables



Form 1: PCStT

• Input:
• Directed graph ! = ($, &)
• Node weights ( ∶ $ → ℚ,
• Edge costs - ∶ & → ℚ,

• Output:
• A tree . = $/, &/ of ! with some root node that can 

reach every other node in . such that

max∑4∈67 (4 - ∑8∈97 -8



Form 1: PCStT

• Input:
• Directed graph ! = ($, &)
• Node weights ( ∶ $ → ℚ

• Reduc6on:
• Directed graph !′ = ($′, &′)

• $- = $ ∪ {0}
• &- = & ∪ 0, 2 2 ∈ $}

• Arc weights 4 = min8∈9 ((2)
• Node weights (- 2 = ( 2 − 4



Form 1: PCStT

1. Variables
• Node variables !" ∈ 0,1
• Edge variables '"( ∈ {0,1}

2. Objective

3. Constraints



Form 2: Cycle

1. Variables
• Node variables !" ∈ 0,1
• Root variables '" ∈ {0,1}

2. Objective

3. Constraints



Form 3: Cut

1. Variables
• Node variables !" ∈ 0,1
• Root variables '" ∈ {0,1}

2. Objec6ve

3. Constraints



Exponen'al Number of 
Constraints

Separa&on Oracle
Root

Vertex



Theore&cal Comparisons
If it works in theory, it works in practice (in theory)



An Example
Assume L >> M  and there are O(n) branches



An Example

Best integral solu.on is 2M
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Assume L >> M  and there are O(n) branches



An Example

CYCLE LP returns O(n)M+2M
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Assume L >> M  and there are O(n) branches



An Example

This is not feasible for PCStT or CUT
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Assume L >> M  and there are O(n) branches



Comparison 1: Quality of LP 
Relaxa8on Bounds
• There exist instances of MWCS such that the ra4o 

of op4mal LP values of MIP relaxa4ons from CYCLE 
to CUT is O(n)



Comparison 2: Quality of LP 
Relaxation Bounds
• The polytope of the LP relaxation of CUT is equal to 

a projection of the polytope for PCStT

R V1

V2

V3



Comparison 2: Quality of LP 
Relaxa8on Bounds
• The polytope of the LP relaxa0on of CUT is equal to 

a projec0on of the polytope for PCStT

R V1

V2

V3



Comparison 2: Quality of LP 
Relaxation Bounds
• The polytope of the LP relaxa0on of CUT is equal to 

a projec0on of the polytope for PCStT

R V1

V2

V3



Comparison 3: Facets of the CUT 
polytope
• In a strongly connected directed graph, the 

dimension of the polytope is 2n-1
• If you fix any one of the following inequalities to be 

tight, the remaining polytope has dimension 2n-2 

!" ≥ 0
%" ≤ 1
%" ≥ !"

(gNSep) with minimal separator and strong subgraph



Computational 
Comparisons
Let’s try it out



How does this work?
1. Pick a node
from B&B tree

2. Solve LP relax-
ation

3. Add user cuts Cuts added?

Integral?4. Add lazy cuts

yes

no

yes
Cuts added?

yes

5. Primal heuristic

nono

6. Branch/prune



Results: Undirected Euclidean 
Random Instances



Conclusions

• Given a hard combinatorial problem, MIPs are 
important tools
• Model connectivity with flow constraints
• Find integral solutions with branch and cut 

frameworks
• More constraints may be used in more specific 

contexts



Addi$onal Results
Time Permitting



Results: Directed System Biology 
Graph



Results: Directed System Biology 
Graph



Results: Directed Euclidean 
Random Instances



Results: Undirected Euclidean 
Random Instances



Results: Undirected Euclidean 
Random Instances



Exception: Undirected System 
Biology Graph
• PCStT runs faster than CUT on sparse and not 

symmetric graph instance 


