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Overview

 What is the MWCS problem?

e How can this be formulated as an MIP?
e Edges
* Cycles
 Cuts
e How can we evaluate which formulation is best?

* Theoretical
* Empirical



MW(CS Problem

What it is and why we care



MWZCS Problem

* Input:
* Graph G = (I/, A)
* Node weightsp : V - Q

* Output:
* A connected subgraph T = (V;, A7) of G such that

max 2 Dy

VvEV T



Directed MWCS Problem

* Input:
* Directed graph G = (VV, A)
* Node weightsp : V - Q

* Output:

A connected subgraph T = (V;, A7) of G with some root
node that can reach every other node in T such that

max 2 Dy

VvEV T



Directed MWCT Problem

* Input:
* Directed graph G = (V,A)
* Node weightsp : V' - Q

* Output:

e Atree T = (Vp, A7) of G with some root node that can
reach every other node in T such that

max z Dy

VvEV T



MW(CS Problem Family

All equivalent to searching for a
maximum node-weighted tree




MW(CS Problem Applications
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Protein-Protein Interactions



MIP Formulations

We have options



MIP Formulations

—
2. Objective

maximize clx

subject to Ax < b,
x>0,

and x € 7",

3. Constraints

1. Variables



Form 1: PCStT

* Input:
* Directed graph G = (V/, A)
* Node weightsp : V - Q7
* Edgecostsc: A - Q7

* Output:

* Atree T = (V, Ap) of G with some root node that can
reach every other node in T such that

mdx ZVEVT Pv - ZaEAT Ca



Form 1: PCStT

* Input:
* Directed graph G = (V/, A)
* Node weightsp : V - Q

* Reduction:
* Directed graph G' = (V', A")
e Vi=VU{r}
c A =AU{(r,v)|lver}
* Arc weights w = minp(v)
vev

* Node weightsp'(v) =p(v) —w



Form 1: PCStT

1. Variables
* Node variables y; € {0,1}
* Edge variables z;; € {0,1}

2. Objective

max{ Zl(pv - W)yv+ z WZij } :
ve (ls.] €Aq

3. Constraints

2(6(0)) =yi, VieV\{r}
2(07(8) >y, VSCV\{r} kes
z2(67(r)) =1.

(D
)
3)



Form 2: Cycle

1. Variables
* Node variables y; € {0,1}
* Root variables x; € {0,1}

2. Objective

max Z/ DPvYv .
veE

3. Constraints
x(V)=1
xi<y, VieV
y(D~(i)) > yi—xi;, VieV
¥(C)—x(C)—y(D~(C)) L[C|-1, VCeF

4)
)
(6)
(7



Form 3: Cut

1. Variables
* Node variables y; € {0,1}
* Root variables x; € {0,1}

2. Objective

max Z/ DPvYv .
veE

3. Constraints

x(V)=1
xi < Yi, VieV

y(N)+x(WN,€)2yE: \V%EV,NEJ’@

4)
(5)
(gNSep)



Exponential Number of
Constraints

Separation Oracle

Vertex



Theoretical Comparisons

If it works in theory, it works in practice (in theory)



An Example

Assume L >> M and there are O(n) branches




An Example

Assume L >> M and there are O(n) branches

Best integral solution is 2M



An Example

Assume L >> M and there are O(n) branches

CYCLE LP returns O(n)M+2M

¥(€)—x(C)—y(D"(C)) £[C| -1, YCe¥ )



An Example

Assume L >> M and there are O(n) branches

This is not feasible for PCStT or CUT

2(67(8) >y, VSCV\{r}, kes Y(N)+x(Wnye) >ye, YLEV,NE€ N



Comparison 1: Quality of LP
Relaxation Bounds

* There exist instances of MWCS such that the ratio

of optimal LP values of MIP relaxations from CYCLE
to CUT is O(n)




Comparison 2: Quality of LP
Relaxation Bounds

* The polytope of the LP relaxation of CUT is equal to
a projection of the polytope for PCStT

O
O

O—



Comparison 2: Quality of LP
Relaxation Bounds

* The polytope of the LP relaxation of CUT is equal to
a projection of the polytope for PCStT
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Comparison 2: Quality of LP
Relaxation Bounds

* The polytope of the LP relaxation of CUT is equal to
a projection of the polytope for PCStT

(2
(=)

O—



Comparison 3: Facets of the CUT
polytope

* In a strongly connected directed graph, the
dimension of the polytope is 2n-1

* If you fix any one of the following inequalities to be
tight, the remaining polytope has dimension 2n-2

(gNSep) with minimal separator and strong subgraph



Computational
Comparisons

Let’s try it out



How does this work?

1. Pick a node
from B&B tree

|

yes

Cuts added?

no

2. Solve LP relax-

ation

yes

3. Add user cuts

Cuts added?

|

no

4. Add lazy cuts

no

5. Primal heuristic

l

|

6. Branch/prune




Results: Undirected Euclidean
Random Instances

(PCSIT) (CUT) (CYCLE)
#nodes #arcs Time(sec) Gap(%) #(2) #NOpt Time(sec) Gap(%) #(gNSep) #NOpt Time(sec) Gap(%) #(7) #NOpt
500 4558 67724 >15.00 1055 5 15.30 - 69 0 61536 550 4289 6

750 7021 1243.57 >15.00 1552 11 108.78 1.27 99 1 47168 2.64 1721 4
1000 9108 1304.76 >15.00 1955 12 150.03 0.29 201 1 99084 6.76 3176 9
1500 14095 152641 >15.00 2021 14 453.82 2.08 373 2 1086.19 10.55 2139 10




Conclusions

* Given a hard combinatorial problem, MIPs are
important tools

* Model connectivity with flow constraints

* Find integral solutions with branch and cut
frameworks

* More constraints may be used in more specific
contexts



Additional Results

Time Permitting



Results: Directed System Biology
Graph

w HT-29-8, k=23, 18118.30 s

4

? GSE13671, k=18, 2245.11s =

3

826.425

= GDS1815, k=20, 193.406 s

log10(Running Times [sec]))

N 7 77.01s *
2207 s -
O -
PCStT CuT CYCLE

Model



Results: Directed System Biology

Graph

(PCSIT) (CUT) (CYCLE)

Instance 0 £ Time(sec) #(2) Time(sec) #(gNSep) Time(sec) #(7)

GSE13671 0.89 0.73 176.11 1206 17.85 97 34195 3754
GDS1815 092 0.64 878.63 3565 46.09 225 37.95 1264
HT-29-8 092 0.66 2846.36 5400 22.03 182 14.17 178

HT-29-24 092 0.61 196.56 1292 11.40 61 60.59 1330
HT-116-8 0.92 0.54 623.10 2214 15.26 108 3.21 129
HT-116-24 092 0.55 237.78 1149 19.82 93 4.19 130
Average 82642 2471 22.07 128 77.01 1131




Results: Directed Euclidean
Random Instances
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Results: Undirected Euclidean
Random Instances
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Results: Undirected Euclidean
Random Instances
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Exception: Undirected System
Biology Graph

e PCStT runs faster than CUT on sparse and not
symmetric graph instance



