The Maximum Weight Connected Subgraph Problem

By Eduardo Álvarez-Miranda, Ivana Ljubicí, and Petra Mutzel

Presented by Sarah Christensen

Overview

- What is the MWCS problem?
- How can this be formulated as an MIP?
 - Edges
 - Cycles
 - Cuts
- How can we evaluate which formulation is best?
 - Theoretical
 - Empirical

MWCS Problem

What it is and why we care

MWCS Problem

- Input:
 - Graph G = (V, A)
 - Node weights $p: V \to \mathbb{Q}$
- Output:
 - A connected subgraph $T = (V_T, A_T)$ of G such that

$$\max \sum_{v \in V_T} p_v$$

Directed MWCS Problem

- Input:
 - Directed graph G = (V, A)
 - Node weights $p: V \to \mathbb{Q}$
- Output:
 - A connected subgraph $T = (V_T, A_T)$ of G with some root node that can reach every other node in T such that

$$\max \sum_{v \in V_T} p_v$$

Directed MWCT Problem

- Input:
 - Directed graph G = (V, A)
 - Node weights $p: V \to \mathbb{Q}$
- Output:
 - A tree $T = (V_T, A_T)$ of G with some root node that can reach every other node in T such that

$$\max \sum_{v \in V_T} p_v$$

MWCS Problem Family

All equivalent to searching for a maximum node-weighted tree

MWCS Problem Applications

Protein-Protein Interactions

MIP Formulations

We have options

Form 1: PCStT

- Input:
 - Directed graph G = (V, A)
 - Node weights $p: V \to \mathbb{Q}^+$
 - Edge costs $c : A \to \mathbb{Q}^+$
- Output:
 - A tree $T = (V_T, A_T)$ of G with some root node that can reach every other node in T such that

$$\max \sum_{v \in V_T} p_v - \sum_{a \in A_T} c_a$$

Form 1: PCStT

- Input:
 - Directed graph G = (V, A)
 - Node weights $p: V \to \mathbb{Q}$
- Reduction:
 - Directed graph G' = (V', A')
 - $V' = V \cup \{r\}$
 - $A' = A \cup \{(r, v) | v \in V\}$
 - Arc weights $w = \min_{v \in V} p(v)$
 - Node weights p'(v) = p(v) w

Form 1: PCStT

- 1. Variables
 - Node variables $y_i \in \{0,1\}$
 - Edge variables $z_{ij} \in \{0,1\}$
- 2. Objective

$$\max\left\{\sum_{v\in V}(p_v-w)y_v+\sum_{(i,j)\in A_d}wz_{ij}\right\}.$$

3. Constraints

$z(\delta^-(i))=y_i, orall i\in V\setminus\{r\}$	(1)
$z(\delta^{-}(S)) \geq y_k, \forall S \subseteq V \setminus \{r\}, \ k \in S$	(2)
$z(\delta^+(r)) = 1.$	(3)

Form 2: Cycle

1. Variables

- Node variables $y_i \in \{0,1\}$
- Root variables $x_i \in \{0,1\}$
- 2. Objective

$$\max\left\{\sum_{\nu\in V}p_{\nu}y_{\nu}\right\}.$$

3. Constraints

x(V) = 1	(4)
$x_i \leq y_i, \forall i \in V$	(5)
$y(D^-(i)) \ge y_i - x_i, \forall i \in V$	(6)
$y(C) - x(C) - y(D^{-}(C)) \le C - 1, \forall C \in \mathscr{C}$	(7)

Form 3: Cut

1. Variables

- Node variables $y_i \in \{0,1\}$
- Root variables $x_i \in \{0,1\}$
- 2. Objective

$$\max\left\{\sum_{\nu\in V}p_{\nu}y_{\nu}\right\}.$$

3. Constraints

x(V) = 1		(4)
$x_i \leq y_i, \forall i \in V$		(5)
$y(N) + x(W_{N,\ell}) \geq y_{\ell},$	$\forall \ell \in V, N \in \mathscr{N}_{\ell}$	(gNSep)

Theoretical Comparisons

If it works in theory, it works in practice (in theory)

Assume L >> M and there are O(n) branches

Assume L >> M and there are O(n) branches

Best integral solution is 2M

Assume L >> M and there are O(n) branches

CYCLE LP returns O(n)M+2M

 $y(C) - x(C) - y(D^{-}(C)) \le |C| - 1, \quad \forall C \in \mathscr{C}$

(7)

Assume L >> M and there are O(n) branches

This is not feasible for PCStT or CUT

 $z(\delta^{-}\left(S
ight))\geq y_{k}, \hspace{1em} orall S\subseteq V\setminus\{r\}, \hspace{1em} k\in S$

 $y(N) + x(W_{N,\ell}) \ge y_{\ell}, \quad \forall \ell \in V, N \in \mathscr{N}_{\ell}$

Comparison 1: Quality of LP Relaxation Bounds

 There exist instances of MWCS such that the ratio of optimal LP values of MIP relaxations from CYCLE to CUT is O(n)

Comparison 2: Quality of LP Relaxation Bounds

• The polytope of the LP relaxation of CUT is equal to a projection of the polytope for PCStT

Comparison 2: Quality of LP Relaxation Bounds

• The polytope of the LP relaxation of CUT is equal to a projection of the polytope for PCStT

Comparison 2: Quality of LP Relaxation Bounds

• The polytope of the LP relaxation of CUT is equal to a projection of the polytope for PCStT

Comparison 3: Facets of the CUT polytope

- In a strongly connected directed graph, the dimension of the polytope is 2n-1
- If you fix any one of the following inequalities to be tight, the remaining polytope has dimension 2n-2

$$x_i \ge 0$$

$$y_i \le 1$$

$$y_i \ge x_i$$

(gNSep) with minimal separator and strong subgraph

Computational Comparisons

Let's try it out

How does this work?

Results: Undirected Euclidean Random Instances

		(PCStT)				(CUT)				(CYCLE)			
#nodes	#arcs	Time(sec)	Gap(%)	#(2)	#NOpt	Time(sec)	Gap(%)	#(gNSep)	#NOpt	Time(sec)	Gap(%)	#(7)	#NOpt
500	4558	677.24	>15.00	1055	5	15.30	_	69	0	615.36	5.50	4289	6
750	7021	1243.57	>15.00	1552	11	108.78	1.27	99	1	471.68	2.64	1721	4
1000	9108	1304.76	>15.00	1955	12	150.03	0.29	201	1	990.84	6.76	3176	9
1500	14095	1526.41	>15.00	2021	14	453.82	2.08	373	2	1086.19	10.55	2139	10

Conclusions

- Given a hard combinatorial problem, MIPs are important tools
- Model connectivity with flow constraints
- Find integral solutions with branch and cut frameworks
- More constraints may be used in more specific contexts

Additional Results

Time Permitting

Results: Directed System Biology Graph

Results: Directed System Biology Graph

			(PCSt)	Г)	(CU	UT)	(CYCLE)		
Instance	δ	ε	Time(sec)	#(2)	Time(sec)	#(gNSep)	Time(sec)	#(7)	
GSE13671	0.89	0.73	176.11	1206	17.85	97	341.95	3754	
GDS1815	0.92	0.64	878.63	3565	46.09	225	37.95	1264	
HT-29-8	0.92	0.66	2846.36	5400	22.03	182	14.17	178	
HT-29-24	0.92	0.61	196.56	1292	11.40	61	60.59	1330	
HT-116-8	0.92	0.54	623.10	2214	15.26	108	3.21	129	
HT-116-24	0.92	0.55	237.78	1149	19.82	93	4.19	130	
Aver	rage		826.42	2471	22.07	128	77.01	1131	

Results: Directed Euclidean Random Instances

Results: Undirected Euclidean Random Instances

Time [sec]

Results: Undirected Euclidean Random Instances

Exception: Undirected System Biology Graph

 PCStT runs faster than CUT on sparse and not symmetric graph instance