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Motivation: Genotype-to-phenotype mapping
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Motivation: Single-cell multiomics for genotype-to-phenotype mapping

Issues: low throughput,

and low quality
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(C) Loss of nucleic acids

DR-seq Minimal risk of loss

G&T-seq (like) Potential loss of mMRNA and DNA

molecules

scTrio-seq Loss of nearly half of cytoplasmic
and all nuclear mRNA-molecules
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and all nuclear mRNA-molecules
during micromanipulation
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Motivation: Matching independent single-cell RNA and DNA sequencing data
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Motivation: Matching independent single-cell RNA and DNA sequencing data
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Problem formulation: Genome-to-Transcriptome Matching

Genome-to-Transcriptome Matching Problem:

Given NxG matrix of expression raw read counts Y for N cells and G genes, and a GxC
matrix A= (A4 ) of clone specific copy numbers for C clones and G genes, find a mapping
z:|[N] — [C] that matches the N RNA-seq cells to the C DNA-seq clones such that
expression likelihood is maximized.



Solution: Negative binomial distribution
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Solution: expression mean
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Solution: over-dispersion

d(n) = Za exp(—b(p — ¢;)?)



Solution: graphical model
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Solution: estimate posterior distribution for mapping z: [N] & [C] and mean parameter u

p(ylz, )
p(y)

p(z,uly) =

p(y) = U p(ylz,w) dz du

« Data likelihood, p(y), is intractable and can only be computed numerically in
exponential time.

« MCMC methods are computationally expensive and do not scale well for large data.

« Using mean-field variational bayes to estimate posterior distribution by solving an
optimization problem.



Validation: Simulation
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C Simulations demonstrate the robustness of clonealign to the underlying proportion of genes exhibiting a copy
number dosage effect. Even if only 30% of genes have a clone-specific copy number effect on expression, clones can
still be accurately assigned with an average AUC >0.8. D Simulations demonstrate clonal assignment is accurate
even when as few as 10-50 genes lie in regions of differing copy number between clones, allowing clonal

assignment from only small-scale genomic rearrangements .



Validation: Breast cancer data
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A Clone-specific copy number for ground truth clones in scDNA-seq (bottom) and clone-specific z-score expression for
clonealign inferred clones in scRNA-seq (top) for regions exhibiting inter-clone copy number aberrations B The mean log
expression as a function of copy number across all clones. C Clone assignment probabilities for 1152 single-cell RNA-seq
profiles across three clones. D A PCA projection using only genes residing in copy number regions shows the cells clustering by

clone along components 2 and 4. -



Validation: Breast cancer data
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Validation: Breast cancer data
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Figure S1: Distribution of root mean square error in predicting the expres-
sion of genes on held out chromosomes (8 & 18) for SA501 under random
repeated permutation of clone assignments (light blue) compared to the ob-
served error under clonealign assignments (red dashed arrow). This demon-
strates the observed error is significantly less than is observed at random

(p < 1073).
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Validation: Ovarian cancer data

A Single Cell Phylogeny
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Validation: Ovarian cancer data
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Figure S20: The maximum likelihood probability for a cell to be assigned
to a clone as a function of the genomic distance (euclidean distance in copy
number space) to the nearest clone. The more distinct clones are, the more
certainty in clonal assignment, while for clones that are very close in copy
number space the model assigns uncertainty to the assignment in RNA-
space.
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CS598MEB Project proposal : Inference of clone-specific expression and copy number
profiles using multi-omics single-cell data
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Given expression matrix Y for N cells and G genes, and an MxL matrix R of DNA-seq read counts for M
DNA-seq cells and L genomic bins, find a mapping 6: [M] — [C] that matches the M DNA-seq cells to C
clonal clusters, matrix A= (A,.) of copy numbers for C clones and G genes, and a mapping z: [N] - [(]
that matches the N RNA-seq cells to the C DNA-seq clones such that expression likelihood is maximized.



Solution: A quick introduction to variational bayes
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Solution: A quick introduction to variational bayes

Data
p\z, X
p(z f_;?) _pmx)
o p(x)
Parameters

e Approximate the posterior with a variational distribution qg(z) such that the KL divergence is minimized

q* (Z) — a'rg min kl (Q(Z) H p(Z | X)) Optimization problem
g(z)eZ2
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Solution: A quick introduction to variational bayes

Data
p\z, X
p(z f_;?) _ pmx)
o p(x)
Parameters

e Approximate the posterior with a variational distribution qg(z) such that the KL divergence is minimized

q* (Z) — a'rg min kl (Q(Z) H p(Z | X)) Optimization problem
g(z)eZ2

kl(q(z) || p(z|x)) = E[log q(z)] — E[log p(z,x)]
+ log p(x).

KL divergence
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Solution: A quick introduction to variational bayes

Data
p\z, X
p(z f_;?) _ pmx)
o p(x)
Parameters

e Approximate the posterior with a variational distribution qg(z) such that the KL divergence is minimized

q* (Z) — a'rg min kl (Q(Z) H p(Z | X)) Optimization problem
g(z)eZ2

kl(q(z) || p(z|x)) = E[log q(z)] — E[log p(z,x)]
+ log p(x).

KL divergence

elbo (q) = K [ log p(z, X)] — K [ log Q(Z)]. Evidence Lower Bound

(ELBO)
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Solution: A quick introduction to variational bayes

Data
p\z, X
p(z f_;?) _ pmx)
o p(x)
Parameters

e Approximate the posterior with a variational distribution qg(z) such that the KL divergence is minimized

¢" (z) = argmin kl (¢q(z) || p(z | x)).
qlz)e2

kl(q(z) || p(z|x)) = E[log q(z)] — E[log p(z,x)]
+ log p(x).

elbo (q) = E| log p(z,x)| — E| log ¢(2)].

log p (x) = ki(q(2) || p(z|x)) + elbo(q).

Optimization problem

KL divergence

Evidence Lower Bound
(ELBO)

Maximize ELBO to

minimize KL divergence
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Solution: Mean-field variational bayes for clonealign

_ Latent variables are mutually
Q(Zi IJ') - an, Q(Zrn,) Hg Q(Mg) independent
RN Variational distribution for clone
Q(Zn—c)_(pnc assignment

ug: exp(vg+pgs) € ~ N(O, ]_) Variational distribution for mean

expression parameter
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Solution: Mean-field variational bayes for clonealign

_ Latent variables are mutually
Q(Zi IJ') - an, Q(Zrn,) Hg Q(Mg) independent
RN Variational distribution for clone
Q(Zn—c)_(pnc assignment

ug: exp(vg+pgs) € ~ N(O, ]_) Variational distribution for mean

expression parameter

Eq(p)[f(z)] = Ep(s)[f(vg T pgs)] ~ 1/LZ%=1 f(vg + pgsl) ’ 8l ~ p(g)

elbo(q) = Eq(zulpe 1z, W] — kl(q(z, Wllpe(z, ) Maximize



