Since : - from T (2-state sp)

- motive
$$h = [a_{pi}]$$
 of $b = h$
 $R = [rpi]$ referred

$$h = [a_{pi}] \text{ of } b = h$$
 $R = [rpi]$ referred

$$h = [a_{pi}] \text{ of } b = h$$
 $R = [rpi] \text{ referred}$

A $\sim Binom(D, f)$
 $Pr(A \mid D, F) = \frac{1}{\sqrt{n}} \prod_{i=1}^{n} R(a_{pi}) \text{ of } i, f_{pi}$
 $= \frac{1}{\sqrt{n}} \prod_{i=1}^{n} \frac{d^{n}}{d^{n}} \cdot f_{pi}$
 $= \frac{1}{\sqrt{n}} \prod_{i=1}^{n} \prod_{i=1}^{n} \frac{d^{n}}{d^{n}} \cdot f_{pi}$

Vos 5m7 icIn7

s.t. $f_{pi} \gg \frac{2}{5e}f_{(i)}$ $f_{pi} \approx \{1, ..., my = lm\}$ $\sum_{\ell=1}^{r} \chi_{i,p,\ell} = 1 \qquad \forall p \in [m], i \in [n]$ $\sum_{\ell=1}^{r} \chi_{i,p,\ell} \propto_{L} = \{p_{i} \quad \forall p \in [m], i \in [n]$ $\sum_{\ell=1}^{r} \chi_{i,p,\ell} \propto_{L} = \{p_{i} \quad \forall p \in [m], i \in [n]$ $\sum_{\ell=1}^{r} \chi_{i,p,\ell} \approx_{L} = \{p_{i} \quad \forall p \in [m], i \in [n]$ $\sum_{\ell=1}^{r} \chi_{i,p,\ell} \approx_{L} = \{p_{i} \quad \forall p \in [m], i \in [n]$ $\sum_{\ell=1}^{r} \chi_{i,p,\ell} \approx_{L} = \{p_{i} \quad \forall p \in [m], i \in [n]$ $\sum_{\ell=1}^{r} \chi_{i,p,\ell} \approx_{L} = \{p_{i} \quad \forall p \in [m], i \in [n]$