CS 598MEB Introduction to Bioinformatics Lecture 7

Mohammed El-Kebir

February 11, 2020

Outline

- Recap
- Tumor Phylogeny Inference from Bulk DNA-seq with Copy-Number Aberrations

Reading:

 M. El-Kebir, G. Satas, L. Oesper and B.J. Raphael. Inferring the Mutational History of a Tumor using Multi-State Perfect Phylogeny Mixtures. <u>Cell</u> <u>Systems, 3(1):43-53, 2016</u>.

Tumor Evolution as a Phylogenetic Tree

Clonal Theory [Nowell, 1976]

Tumor

Phylogenetic Tree

Observations are Leaves of a Perfect Phylogeny T

Tumor Snapshot

Binary Matrix **B**

Two-State Perfect Phylogeny Tree T

Assumptions:

- Mutations are single nucleotide variants (SNVs)
- Infinite sites assumption

Seq. method	Inferring T	Complexity
single- cell	unmixed two-state perfect phylogeny	O(mn)

Observations are Mixtures of the Leaves of T

Two-State Perfect Phylogeny Tree **T** Mixing Proportions **U**

Seq. method	Inferring T	Complexity
single- cell	unmixed two-state perfect phylogeny	O(mn)
bulk	mixed two-state perfect phylogeny	NP-complete

TrAp [Strino *et al.*, 2013], PhyloSub [Jiao *et al.*, 2014] CITUP [Malikic *et al.*, 2015], BitPhylogeny [Yuan *et al.*, 2015] LICHEE [Popic *et al.*, 2015], ...

Copy-Number Aberrations Confound VAFs

- Multi-State Perfect Phylogeny Mixture Problem
- Combinatorial Characterization of Solutions
- Application to Cancer Bulk-Sequencing Data
- Results

Infinite Sites Generalizes to Infinite Alleles

<u>Two-State Perfect Phylogeny</u> – Infinite sites assumption: a character changes state once

Infinite Sites Generalizes to Infinite Alleles

<u>Two-State Perfect Phylogeny</u> – Infinite sites assumption: a character changes state once

VAF Factorization Problem (VAFFP): Given *F*, find *U* and *B* such that *F* = *U B* [El-Kebir, Oesper et al., 2015]

Multi-State Perfect Phylogeny – Infinite alleles assumption: a character changes to a state once

Multi-state Perfect Phylogeny Mixture Problem: Given F, find U and A such that F_i = U A_i for all states i

Combinatorial Characterization of Solutions

Multi-State Perfect Phylogeny

Combinatorial Characterization of Solutions

Multi-State Ancestry Graph **G**

- Multi-State Perfect Phylogeny Mixture Deconvolution Problem
- Combinatorial Characterization of Solutions
- Application to Cancer Bulk-Sequencing Data
- Results

Application to Cancer Bulk Sequencing

Application to Cancer Bulk Sequencing

SPRUCE Enumerates Phylogenies

<u>Somatic</u> <u>Phylogeny</u> <u>Reconstruction</u> <u>Using</u> <u>Combinatorial</u> <u>Enumeration</u> Available at: http://compbio.cs.brown.edu/projects/spruce/

SPRUCE: Somatic Phylogeny Reconstruction Using Combinatorial Enumeration

- Multi-State Perfect Phylogeny Mixture Deconvolution Problem
- Combinatorial Characterization of Solutions
- Application to Cancer Sequencing
- Results

SPRUCE Accurately Recovers Simulated Trees

Methods:

- SPRUCE
- PhyloWGS [Deshwar et al., 2015]

Increasing number of samples decreases ambiguity

SPRUCE Accurately Recovers Simulated Trees

Methods:

- SPRUCE
- PhyloWGS [Deshwar et al., 2015]

Increasing number of samples decreases ambiguity

SPRUCE Accurately Recovers Simulated Trees

Methods:

- SPRUCE
- PhyloWGS [Deshwar et al., 2015]

Increasing number of samples decreases ambiguity

More Samples vs. More Coverage

Violations of Infinite Alleles Assumption

Cancer Cell Fractions (CCFs) Cannot Be Inferred A Priori

$$\mathsf{CCF}(\bigcirc) = \frac{\# \operatorname{tumor} \operatorname{cells} \operatorname{with} \bigcirc}{\# \operatorname{tumor} \operatorname{cells}}$$

CCFs are used extensively in studying intra-tumor heterogeneity and tumor evolution:

1. Timing of driver mutations

- Andor et al. Nature (2015)
- McGranahan et al. Science Translational Medicine (2015)

2. Tumor evolution and phylogeny reconstruction

- Bolli et al. Nature communications (2014)
- Nik-Zainal et al. The life history of 21 breast cancers. Cell (2012)
- Sanborn et al. PNAS (2015)
- Sottoriva et al. Nature Genetics (2015)

3. Developmental patterns of metastases

- Brastianos et al. Cancer Discovery, (2015)
- Gundem *et al. Nature* (2015)

Metastatic Evolution in Prostate Tumor

Adapted from:

Gundem *et al.* (2015). *Nature*. The evolutionary history of lethal metastatic prostate cancer

Input:

 10 samples: whole-genome & targeted sequencing

DNAJA4

FLG

TFB1M

ZNF396

• ~110 SNVs

Tree building:

- Infer cancer cell fraction (CCF) for each SNV in each sample
- 2. Cluster SNVs by CCFs across samples
- Construct tree using Pigeon-Hole-Principle (Sum Condition)

Cancer Cell Fractions Cannot Be Inferred A Priori

Conclusions

- Copy-number aberrations confound variant allele frequencies
 - SNVs and CNAs must be considered jointly in phylogeny reconstruction
- Generalization of infinite sites for SNVs is infinite alleles for SNVs + CNAs
 - Multi-state Perfect Phylogeny Mixture Problem (PPM)
- Complete combinatorial characterization of the problem
 - Solutions are constrained spanning trees in a directed multi-graph
 - PPM is NP-complete for *k* = 2 and *m* = 2
- Using combinatorial structure, SPRUCE accurately recovers simulated trees
- Cancer cell fractions cannot be uniquely inferred *a priori* by considering SNVs in isolation
- Precise mathematical models are needed to describe evolutionary process in cancer

