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Infinite Sites Model = Two-state Perfect Phylogeny

The genome is large

Infinite sites model: multiple mutations
never occur at the same position

[Kimura, 1969]

Mutations are rare
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Infinite Alleles Model = Multi-state Perfect Phylogeny

Infinite alleles model:

* For any mutation, there are an

- infinite number of possibilities of
what mutation looks like (states).

* So, the same position can be

Mutation Site mutated multiple times, but it

« never mutates to the same “allele”

or state.
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Multi-state Perfect Phylogeny

1 C C3
: . nxm rn |1 2 1
Matrix M € {0,..., k — 1} has 11 0 o
n taxa and m characters nl2 2 0
ra 0 1 0
I's 0 2 2

Definition r1(1,2,1) ro(1,0,0)

A multi-state perfect phylogeny for M is a
tree T with n leaves such that:

© Each taxon labels exactly one leaf
@ Each node is labeled by {0,..., k—1}"

© Nodes labeled with state / for character
c form a connected subtree T.(/) r4(0,1,0)

Theorem (Bodlaender et al., 1992) [Bodlaender, Fellows and Warnow]
For general k, the multi-state perfect phylogeny problem is NP-complete




Cladistic vs. Qualitative Characters

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:
© Each taxon labels exactly one leaf
@ Each node is labeled by {0,..., kK —1}™

© Nodes with state i for character ¢ form a connected subtree T.(/)
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SPhyR: Tumor Phylogeny Estimation
from Single-Cell Sequencing Data under
Loss and Error




Single-cell Tumor Phylogeny Inference

S
),

Heterogeneous Tumor Phylogenetic Tree T

Goal: Given single-cell DNA sequencing data, find phylogenetic tree T
Requirement: Evolutionary model for somatic mutations




Somatic Mutations Occur at Different Genomic Scales

Size (bp)
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Infinite Sites Assumption is too Restrictive for SNVs
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_Variant (SNV)

Small Insertion /
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Copy-Number
Aberration (CNA)

Structural
Variant (SV)

Whole-Genome
Duplication (WGD)

SNVs can be lost due to CNAs

copy number loss

ACGTCE%GAGCGG 0
ACGTCGAGAGCGG
ACGTCiiGAGCGG 1
ACGTC|/TAGAGCGG
ACGTCGAGAGCGG 0
—————— ---CGG

5)

Infinite sites assumption:

No parallel evolution of SNVs
No loss of SNVs

SCITE [ahn et al. 2016]

OncoNEM [Ross and Markowetz, 2016]
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* Perfect data (error free)
* Problem statement
* Combinatorial characterization of solutions
* Exact algorithm
e Results

* Real data (with errors)
* Problem statement
* Heuristic algorithm
e Results

* Conclusions
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k-Dollo Phylogeny (k-DP) Problem

Definition 1. A k-Dollo phylogeny T"is arooted, node-labeled tree subject o
to the following conditions. y
11000
1. Each node v of T is labeled by a vector b,, € {0, 1}™.
2. The root r of T is labeled by vector b,- = [0, ...,0]T.
01110 10111
3 é-%
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k-Dollo Phylogeny (k-DP) Problem

00000
Definition 1. A k-Dollo phylogeny T"is arooted, node-labeled tree subject ﬁ + O

to the following conditions.

1. Each node v of T is labeled by a vector b, € {0, 1}". * 2 —- O
2. Theroot r of T is labeled by vector b, = [0, ..., O]T. / + + @

3. For each character ¢ € [n], there is exactly one gain edge (v, w) in 01110 10111

T such that by = 0 and by = 1.
4. For each character ¢ € [n], there are at most k loss edges (v, w) in |
T such that by . = 1 and by, = 0. @
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k-Dollo Phylogeny (k-DP) Problem

Definition 1. A k-Dollo phylogeny T"is arooted, node-labeled tree subject

to the following conditions.

1.
2.
3.

Each node v of T' is labeled by a vector b,, € {0, 1}™.

The root  of T is labeled by vector b, = [0, ...,0]T.

For each character ¢ € [n], there is exactly one gain edge (v, w) in
T such that by = 0 and by = 1.

For each character ¢ € [n], there are at most k loss edges (v, w) in
T such that by . = 1 and by, = 0.

k-Dollo Phylogeny problem (k-DP). Given a binary matrix B €
{0,1}™*™ and parameter £k € N, determine whether there exists a
k-Dollo phylogeny for B, and if so construct one.

\ 4

00000
+ O

+ @

11000
-
+ @

10111

o00

00000 01110 01110 11000 10111 10111

©)

k

n SNVs

— - O OO @

S OO == O

oS oo == O 0

—_—_- oo oo 0

CeOOO0

S|[20 w

19



Combinatorial Characterization of k-DP

Theorem 3. Let B € {0,1}™*". The following statements are
equivalent.

1. There exists a k-Dollo phylogeny 7' for B.

2. There exists a k-Dollo completion A of B.

3. There exists a k-completion A of B such that the binary factor Q
matrix B’ of (A, S[k]) is a perfect phylogeny matrix. k-Dollo State Tree S[k]

4. There exists a k-completion A of B, and perfect phylogeny 1" for A
whose characters are consistent with S|k].
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Forbidden Submatrices in Solutions A to k-DP
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Number of forbidden submatrices is 4k* + 8k3 + 8k? + 4k + 1
Open question: Hardness of deciding whether B admits a k-Dollo completion A




Results for k-DP

* Naive ILP does not scale and has O(mnk) variables and O(m?3n2k*) constraints

e Column and cutting plane generation
* Introduce variables and constraints only when needed

e Simulations with 60 instances for each m, n and k
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Outline

* Perfect data (error free)
* Problem statement
* Combinatorial characterization of solutions
e Exact algorithm
e Results

* Real data (with errors)
* Problem statement
* Heuristic algorithm
* Results

* Conclusions
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m cells

k-Dollo Phylogeny Flip and Cluster (k-DPFC) problem. Given matrix
D € {0,1,7}™*™ error rates o, € [0,1], integers k,s,t € N, find matrix
B € {0,1}"™*™ and tree T such that: (1) B has at most s unique rows and at
most ¢ unique columns; (2) Pr(D | B, «, 8) is maximum; and (3) T is a k-Dollo
phylogeny for B. ,
a, dp.=1and b,. =0
m n |1—a, dp.=1andb,.=1,
Pr(D | B,o,8) = ][ ][ 5. dyo=0and b, =1,

p=lc=1[1_38 ¢ . =0andb,, =0,
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SPhyR: Single-cell Phylogeny Reconstruction

* Coordinate ascent:
1. k-Means with random seed to obtain cell clustering r and SNV clustering
2. ILP to obtain maximum likelihood k-Dollo completion A given D, it and ¢
3. Identify maximum likelihood rt given A and ¢
4. ldentify maximum likelihood ¢ given A and nt
5. Repeat until convergence

 Available on Github: https://github.com/elkebir-group/SPhyR
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Simulation
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Colorectal patient CRC1 [Leung et al., 2017
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Conclusions

* k-Dollo parsimony model strikes a balance between realistic and yet
sufficiently constrained

* Solutions are integer matrix completions
* SPhyR outperformed existing methods

Future work:
* Include a and 6 into optimization

 Model selection fors, t and k

* Hardness is open
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