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Course Project
• 1-2 students per project
• First write a proposal, which will receive feedback from instructor and fellow 

students
• Then, conduct research and write a paper
• Pick venue (conference/journal) and use LaTeX style for your paper
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Lecture Outline
• Recap
• Two-state Perfect Phylogeny Mixtures

Reading
• M. El-Kebir, L. Oesper, H. Acheson-Field and B. J. Raphael. Reconstruction of 

clonal trees and tumor composition from multi-sample sequencing 
data. Bioinformatics (Special Issue: Proceedings of ISMB), 31(12):i62-i70, 
2015
• Y. Qi, D. Pradhan and M. El-Kebir. Implications of non-uniqueness in 

phylogenetic deconvolution of bulk DNA samples of tumors. Algorithms for 
Molecular Biology, 14:19, 2019.
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https://doi.org/10.1093/bioinformatics/btv261
https://doi.org/10.1186/s13015-019-0155-6


Tumorigenesis: Cell Mutation
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Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Founder 
tumor cell
with somatic mutation: 
(e.g. BRAF V600E)



Tumorigenesis: Cell Mutation
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Clonal Evolution Theory of Cancer 
[Nowell, 1976]

Clonal expansion



Tumorigenesis: Cell Mutation
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Clonal Evolution Theory of Cancer 
[Nowell, 1976]

New clones



Tumorigenesis: Cell Mutation & Division
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Intra-Tumor 
Heterogeneity

Clonal Evolution Theory of Cancer 
[Nowell, 1976]
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Phylogenetic 
Tree T

Intra-Tumor 
Heterogeneity

Tumorigenesis: Cell Mutation & Division

Clonal Evolution Theory of Cancer 
[Nowell, 1976]



Infinite Sites Model
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Infinite sites model: multiple mutations 
never occur at the same position

[Kimura, 1969]

…

…

The genome is large

Mutations are rare
A
B
C
D
E

Mutated Loci

1: mutated
0: not

0  0  0  0  1   1
0  0  0  1  1   1
0  0  1  0  1   0
1  0  0  0  0   0
1  1  0  0  0   0

All sites are bi-allelic: mutated or not.



Progression of Somatic Mutations
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0110001

1110101

1011011

0 = normal
1 = mutated

Normal cell

Tumor cells

… CGTAATTAG …

… CGTCATTAG …

Single nucleotide mutation

Root is the normal, founder cell and leaves are cells in tumor.

Infinite sites assumption: each locus mutates only once.



Lecture Outline
• Recap
• Two-state Perfect Phylogeny Mixtures
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https://doi.org/10.1093/bioinformatics/btv261
https://doi.org/10.1186/s13015-019-0155-6
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Sequencing and Tumor Phylogeny Inference
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Tumor Phylogeny Inference: Given frequencies F, 
find phylogeny T and proportions U
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Sequencing and Tumor Phylogeny Inference
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Key Challenge in Computational Biology
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Translating a biological problem into a computational biology

Biological
question

Analyzing
complexity &
combinatorial

structure

Formulating a
combinatorial

problem

Designing an
algorithm

Interpreting
solutions and
validating the

algorithm

?



Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015]
Given F, find U and B such that F = U B
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Equivalent

Perfect Phylogeny Theorem 
[Estabrook, 1971]

[Gusfield, 1991]

Perfect Phylogeny Mixture



Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015]
Given F, find U and B such that F = U B
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Tree T

Equivalent

Perfect Phylogeny Theorem 
[Estabrook, 1971]

[Gusfield, 1991]

Previous Work
Variant of PPM:
TrAp [Strino et al., 2013], PhyloSub [Jiao et al., 2014]
CITUP [Malikic et al., 2015], BitPhylogeny [Yuan et al., 2015]
LICHeE [Popic et al., 2015],  …



Combinatorial Characterization

• Combinatorial characterization involves investigating what 
(optimal) solutions look like
• This starts by asking questions!
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Perfect Phylogeny Mixture: [El-Kebir*, Oesper* et al., 2015]
Given F, find U and B such that F = U B
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Given F and T (or B), is there a usage matrix U?
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Given F and T (or B), is there a usage matrix U?
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Given F and B, U is unique: U = F B-1

Restricted PP Matrix B



Given F and T (or B), is there a usage matrix U?

Restricted PP Matrix B

= 

Frequency Matrix F Usage Matrix U
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Combinatorial Characterization of Solutions
Lemma:

upj = fpj �
X

k child of j

fpk
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Combinatorial Characterization of Solutions
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Lemma (Sum Condition):
Given F and T, for all samples p and 
mutations j, fpj �

X

k child of j

fpk necessary

sufficient

F



Combinatorial Characterization of Solutions
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Ancestry graph G = (V, A); given F
• Vertex for every mutation
• Edge                      iff

for all samples p
(j, k) 2 A fpj � fpk

necessary
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Ancestry Graph G = (V, A)

Lemma (Sum Condition):
Given F and T, for all samples p and 
mutations j, fpj �

X

k child of j

fpk necessary

sufficient

F

potential parental
relationship



Theorem 2:
PPM is NP-complete

Combinatorial Characterization of Solutions
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Ancestry graph G = (V, A); given F
• Vertex for every mutation
• Edge                      iff

for all samples p
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Theorem 1:
T is a solution to the PPM if and only if 
T is a spanning tree of G satisfying the Sum 
Condition

necessary
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Ancestry Graph G = (V, A)

Lemma (Sum Condition):
Given F and T, for all samples p and 
mutations j, fpj �

X

k child of j

fpk necessary

sufficient

T

F



max
X
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Find the largest 
set of edges in G

Exactly one root node

Connectivity

Tree

Sum condition

Solving the PPM problem: ILP formulation
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G = (V, A)



Non-uniqueness of Solutions to PPM

F =

✓
1 0 0 0.06 0
1 0.75 0.33 0 0.25

◆

Question 0:  Reconstruct all 
solutions?
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Non-uniqueness of Solutions to PPM
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Question 1:  Can we determine 
the number of solutions?

Question 2:  Can sample 
solutions uniformly at random? 27

Question 3:  How to 
enumerate solutions?



Recall: Different Types of Problems!
Problem Π with instance 𝑋 and solution set Π 𝑋 :
• Decision problem:
• Is Π 𝑋 = ∅?

• Optimization problem:
• Find 𝑦∗ ∈ Π 𝑋 s.t. 𝑓(𝑦∗) is optimum.

• Counting problem:
• Compute Π 𝑋 .

• Sampling problem:
• Sample uniformly from Π 𝑋 .

• Enumeration problem:
• Enumerate all solutions in Π 𝑋

28

Algorithms:
Set of instructions for 
solving problem.
• Exact
• Heuristic



On the Complexity of #PPM (new results)
Question 1:  Can we determine 

the number of solutions?

29

#PPM:  Given F, count the number of pairs (U, B) composed of 
mixture matrix U and perfect phylogeny matrix B such that F = U B

Question 2:  Can sample 
solutions uniformly at random?



On the Complexity of #PPM (new results)
Question 1:  Can we determine 

the number of solutions?

30

#PPM:  Given F, count the number of pairs (U, B) composed of 
mixture matrix U and perfect phylogeny matrix B such that F = U B

Question 2:  Can sample 
solutions uniformly at random?

#P is the complexity class of 
counting problems whose 
decision problems are in NP

Every problem in #P can be reduced 
in polynomial time to any problem in 
#P-complete, preserving cardinalities



On the Complexity of #PPM (new results)
Question 1:  Can we determine 

the number of solutions?

31

#PPM:  Given F, count the number of pairs (U, B) composed of 
mixture matrix U and perfect phylogeny matrix B such that F = U B

Question 2:  Can sample 
solutions uniformly at random?

#P is the complexity class of 
counting problems whose 
decision problems are in NP

Every problem in #P can be reduced 
in polynomial time to any problem in 
#P-complete, preserving cardinalities

Theorem:  #PPM is #P-complete

Theorem:  There is no 
FPRAS for #PPM

Theorem:  There is no 
FPAUS for PPM Yuanyuan Qi
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Outline
Background and theory:
• Perfect Phylogeny Mixture (PPM) problem
• Combinatorial characterization of solutions
• #PPM: exact counting and uniform sampling

Simulation results:
• What contributes to non-uniqueness?
• How to reduce non-uniqueness?
• How does non-uniqueness affect 

current methods?
Dikshant Pradhan
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What Contributes to Non-uniqueness?
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What Contributes to Non-uniqueness?

G

T
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An Upper Bound for Number of Solutions

G

T
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An Upper Bound for Number of Solutions

G

T
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How to Reduce Non-Uniqueness?

G

T
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How to Reduce Non-Uniqueness?

G

T
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How to Reduce Non-Uniqueness?



40

How Does Non-uniqueness affect Methods?
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Two current MCMC methods using default parameters: 
• PhyloWGS, Deshwar et al., Genom. Biol., 2015 [10,000 samples]
• Canopy, Jiang et al., PNAS, 2016 [~300 samples]
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Rejection Sampling Does Not Scale
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Probabilistic Model for Noisy Measurements
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VAF posterior distribution (beta) given 
the reads of mutation i in sample p

[Xpi] = 

mutations

sam
plesCGACGTGA

GCGGACGT

…GAGAAAGCTGCGGACGTGGACGA…
TGCGGACG

TACGTGGA
GCGTACGT

Variant allele frequency (VAF): 0.4

S3

S3

S2

S1

0

@
0.8 0.8 0.8 0.0 0.0 0.0
0.7 0.6 0.0 0.6 0.0 0.0
0.8 0.0 0.0 0.0 0.6 0.4

1

AF = [fpi] = 

mutations

sam
ples

VAF of mutation i in sample p

VAF(   ) = # reads with
# reads

Uncertainty due to: 
(i) sequencing errors
(ii) mapping errors

(iii) sampling



VAF posterior distribution (beta) given 
the reads of mutation i in sample p

[Xpi] = 

mutations

sam
ples

Probabilistic Model for Noisy Measurements
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Consider (1 - α) confidence intervals:
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S1

F = [fpi] = 

mutations

sam
ples
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Interval PPM (I-PPM)
Given F - and F+ , find F, U and B such that F = U B

and                                 for all samples p and mutations if�
pi  fpi  f+

pi

F = [fpi] = - -
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S1
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Real Data
• Cohort of 100 lung cancers [Jamal-Hanjani, NEJM 2017]
• 90% confidence intervals
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Challenge I
Novel algorithms that sample 

uniformly at random 
from the space of PPM solutions

9

Identify targets for treatment Understand metastatic development Recognize common patterns of 
tumor evolution across patients

Challenges

Downstream analyses in cancer genomics critically rely on 
accurate tumor phylogeny inference

Challenge II
Algorithms to accurately 

summarizing solution space 
(consensus trees)
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Conclusion
Background and theory:
• Perfect Phylogeny Mixture (PPM) problem
• Combinatorial characterization of solutions
• #PPM: exact counting and uniform sampling

Simulation results:
• What contributes to non-uniqueness?
• How to reduce non-uniqueness?
• How does non-uniqueness affect current methods?



Summary of Lectures 1, 2 and 3
• DNA, RNA and proteins are sequences

• Central dogma of molecular biology: DNA -> RNA -> protein

• Problem != algorithm

• Key challenge in computational biology is translating a biological problem into a 
computational problem

• Cancer is a genetic disease caused by somatic mutations

• Inter-tumor heterogeneity and intra-tumor heterogeneity:
• Not only is every tumor different, but so is every tumor cell…

• Non-uniqueness of solutions in phylogeny reconstruction from bulk DNA samples
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