

Copy-Number Evolution Problems: Complexity and Algorithms

Mohammed El-Kebir, Ben Raphael, Ron Shamir, Roded Sharan, **Simone Zaccaria**, Meirav Zehavi and **Ron Zeira**

> August 23 WABI 2016

Evolution of Cancer

- Cancer is an evolutionary process characterized by the accumulation of somatic mutations
- Different populations of cells form a tumor

Inference of evolution for understanding:

- Order of mutations
- Dynamics of clones
- Effects of treatment
- Driver mutations

• ...

Ding et al. Nature 2012

Copy-Number Aberrations

• For most tumor types, *copy-number aberrations* are ubiquitous

Copy-number profiles

- *Copy-number profiles* encode the number of copies of each region along a chromosome.
- Inferred from experimental data (sequencing, aCGH, FISH)

Chromosome = Copy number profile

Chromosome = Copy number profile

Evolves by copy number change events

Chromosome = Copy number profile

Evolves by copy number change events

Event: segmental duplication / deletion

Chromosome = Copy number profile

Evolves by copy number change events

Event: segmental duplication / deletion

Chromosome = Copy number profile

Evolves by copy number change events

Event: segmental *duplication* / *deletion*

Distance from S to T: least no. of operations

dist(S,T) = 3

Chromosome = Copy number profile

Evolves by copy number change events

Event: segmental *duplication* / *deletion*

Distance from S to T: least no. of operations

Previous work

- Schwarz et al. PLoS CB 2014:
 - Presented model, developed a heuristic procedure for tree reconstruction
 - Reconstructed ovarian cancer sample phylogeny.
- Shamir, Zehavi, and Zeira CPM 2016:
 - A linear time algorithm for $S \rightarrow T$ distance.

This work

• Copy-number triplet (CN3):

• Copy-number tree (CNT):

 $1 \ 4 \ 4 \ 5 \ 5 \ 3$

2 0 2 3 4 2

Copy-Number Triplet Problem (CN3)

• Given two profiles, find a parent profile minimizing the sum of distances to them.

Copy-Number Triplet Problem (CN3)

• Given two profiles, find a parent profile minimizing the sum of distances to them.

Problem properties

- Shamir et al. 2016:
 - There is an optimal S→T sorting scenario where all deletions precede all amplifications.
 - Let B be the maximal copy-number. There is an optimal $S \rightarrow T$ sorting scenario that deletes/amplifies each position $\leq B$ times.
- Lemma: There is an optimal solution to CN3 where all positions in the parent are $\leq B$.

Dynamic programming solution

L: Optimal value of solution for prefixes 1,...i given the values of the parameters.

Dynamic programming solution

•
$$L[i,m,d^{u},a^{u},d^{v},a^{v}]:$$

$$P(i) = \sum_{a^{u} \text{ amplifications on } i} i$$

$$B = 5$$

$$u = \sum_{a^{u} amplifications on } i$$

$$B = 5$$

$$u = \sum_{a^{u} amplifications on } i$$

$$B = 5$$

$$u = \sum_{a^{u} amplifications on } i$$

$$B = 5$$

$$u = \sum_{a^{u} amplifications on } i$$

$$B = 5$$

$$U = \sum_{a^{u} amplifications on } i$$

$$E[i,m,d^{u},a^{u},d^{v},a^{v}] = \max_{a^{u},a^{u'},a^{u'},a^{v'} \leq N} \left\{ L[i-1,m',d^{u'},a^{u'},d^{v'},a^{v'}] + \max_{a^{u},a^{u'},a^{u'},a^{v'} \leq N} + \max_{a^{u},a^{u'},a^{u'},a^{v'},a^{v'} \leq N} + \max_{a^{u},a^{u'},a^{u'},a^{v'},a^{v'} \leq N} + \max_{a^{u},a^{u'},a$$

new deletions new amplifications

Ron Zeira

Dynamic programming solution

•
$$L[i,m,d^{u},a^{u},d^{v},a^{v}]$$
:
 i
 $(?,?,m,?,?)$
 d^{v} deletions on i
 a^{v} amplifications on i
 $B = 5$
 u
 $1 4 4 5 5 3$
 d^{v} deletions on i
 a^{v} amplifications on i
 $B = 5$
 u
 $1 4 4 5 5 3$
 $2 0 2 3 4 2 v$
 $L[i, m, d^{u}, a^{u}, d^{v}, a^{v}] = \min_{\substack{0 \le m' \le N \\ 0 \le d^{u'}, a^{u'}, d^{v'}, a^{v'} \le N \\ 0(nB^{10}) \text{ time} \\ 0(nB^{5}) \text{ space}}$
 $Can be improved to 0(nB^{7}) \text{ time,}
 $0(nB^{4}) \text{ space}$
 A^{v}
 A^{v}
 $A^{v}, a^{v'} = 0$
 a^{v}
 $a^{v} = 0$
 $a^{v}, 0\}$
 a^{v}
 a^{v}
 $a^{v} = 0$
 $a^{v}, 0\}$
 a^{v}
 a^{v}
 $a^{v}, 0\}$
 a^{v}
 $a^{v}, 0\}$
 a^{v}
 $a^{v}, 0\}$
 a^{v}
 $a^{v}, 0\}$$

Ron Zeira

CN3 simulations results

• Comparing DP and an ILP with O(n) variables and constraints

Ron Zeira

CN3 Conclusions

- DP alg for CN3: linear in n, pseudo-polynomial (O(nB⁷))
- An ILP with O(n) variables and constraints
- In simulations: ILP runs faster than DP, obtains the optimum, independent of B
- Complexity of CN3 is still open!

 $1 \ 4 \ 4 \ 5 \ 5 \ 3$

Tree for tumor evolution

Extant clones inferred from multi samples

Evolutionary history of clones is modelled by a phylogenetic tree:

- 1. Leaves correspond to extant clones
- 2. Edges are labeled by mutations

Copy-Number Tree (CNT)

• <u>Input</u>: collection of CN profiles

Copy-Number Tree (CNT)

- <u>Input</u>: collection of CN profiles
- <u>Output</u>: copynumber phylogeny:
 - Rooted in the normal diploid profile
 - The leaves are the input profiles
 - Explained by the minimum number of events

Computational Complexity

- CNT is NP-hard
- Reduction from the NP-hard Steiner Problem in Phylogeny (also called Maximum Parsimony Phylogeny):
 - Binary vectors
 - Events are single flips

MPP instance and solution T with cost $\Delta(T) = 5$

Computational Complexity

- Transformation:
 - $0 \rightarrow 2$ and $1 \rightarrow 1$ (real copy-numbers)
 - A wall Ω (21…12) between consecutive real copy-numbers, large enough

MPP instance and solution T with cost $\Delta(T) = 5$

$$\Omega = \begin{pmatrix} 2 & 1 & \cdots & 1 & 2 \end{pmatrix}$$

 $|\Omega| = nk = 20$

$(1\Omega^2\Omega^2\dot{\Omega}^2)$	$(1\Omega 2\Omega 2\Omega 1)$	$(2\Omega^2\Omega 2\Omega 1)$	$(2\dot{\Omega}1\Omega1\Omega2)$	(2222222)
$\mathbf{c}_1 = \phi(\mathbf{b}_1)$	$\mathbf{c}_2 = \phi(\mathbf{b}_2)$	$c_3=\phi(\mathbf{b}_3)$	$\mathbf{c_4} = \phi(\mathbf{b_4})$	$\mathbf{c}_5 = \phi(\mathbf{b}_5)$

Computational Complexity

- Key observation: no amplification or deletion breaches the wall $\boldsymbol{\Omega}$
 - → Amplifications and deletions correspond to flips

1. Build a spanning tree from a DAG that contains all the possibilities

1. Build a spanning tree from a DAG that contains all the possibilities

- 1. Tree is binary, w.l.o.g. by splitting high degree vertices
- 2. Tree is full binary, w.l.o.g. by collapsing outdegree-2 internal nonroot vertices and solving an additional instance adding the root to the leaves

1. Build a spanning tree from a DAG that contains all the possibilities

1. Build a spanning tree from a DAG that contains all the possibilities

2. Compute the labeling of the internal vertices and the cost of the edges in order to minimize number of events

1. Build a spanning tree from a DAG that contains all the possibilities

2. Compute the labeling of the internal vertices and the cost of the edges in order to minimize number of events

1. Build a spanning tree from a DAG that contains all the possibilities

2. Compute the labeling of the internal vertices and the cost of the edges in order to minimize number of events

1. Build a spanning tree from a DAG that contains all the possibilities

2. Compute the labeling of the internal vertices and the cost of the edges in order to minimize number of events

 $O(k^2n + kn \log e)$ variables and constraints

Simulations: Running time

- Implemented in C++ with CPLEX 12.3
- Simulated instances (1 chromosome) were generated varying the profile's length (*n*), the number of leaves (*k*), and number of events:

→ $n \in \{5,10,15,20,30,40\}$ and $k \in \{4,6,8\}$ are realistic

Simulations: Accuracy

- RF metric symmetric difference between partitions of two trees as measure of topological accuracy
- 0 corresponds to identical topologies

(b) Normalized Robinson-Foulds (RF) metric

CNT Conclusions

- CNT: NP-hardness, solving algorithm (ILP)
- The results of ILP on simulated data show good accuracy on instances of real size
- Next step: experiments on real data → need of dealing with additional factors as diploid genomes

Open Questions

- Computational complexity of CN3
- Computational complexity of the 'small phylogeny' for CNT (with fixed topology)

Thanks for the attention. Questions?

Ron Shamir

Roded Sharan

Meirav Zehavi

Ron Zeira

Mohammed El-Kebir Ben Raphael **Simone Zaccaria**