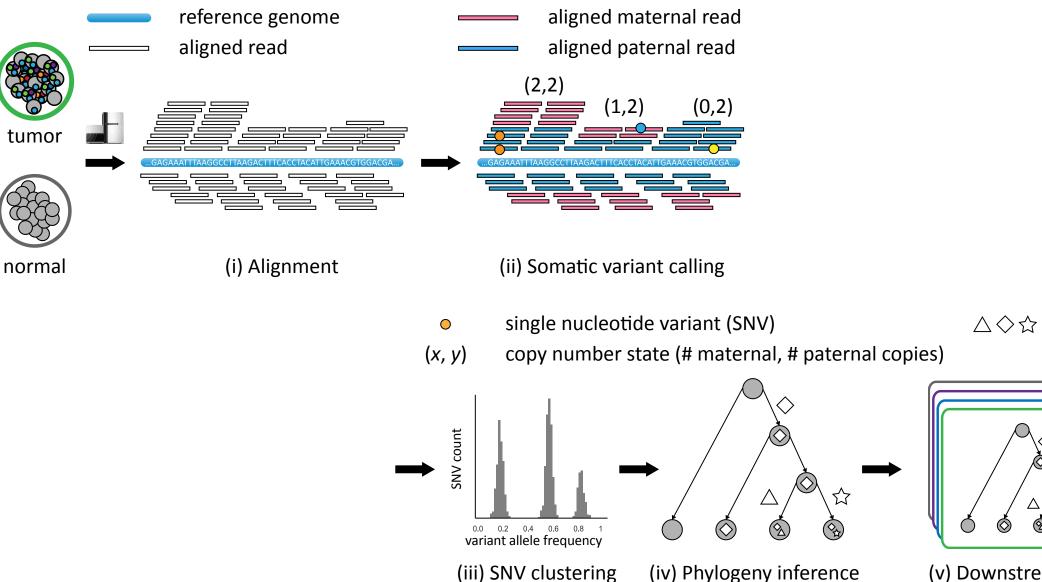
CS 598MEB Computational Cancer Biology Lecture 11

Mohammed El-Kebir February 25, 2020

> ך ר

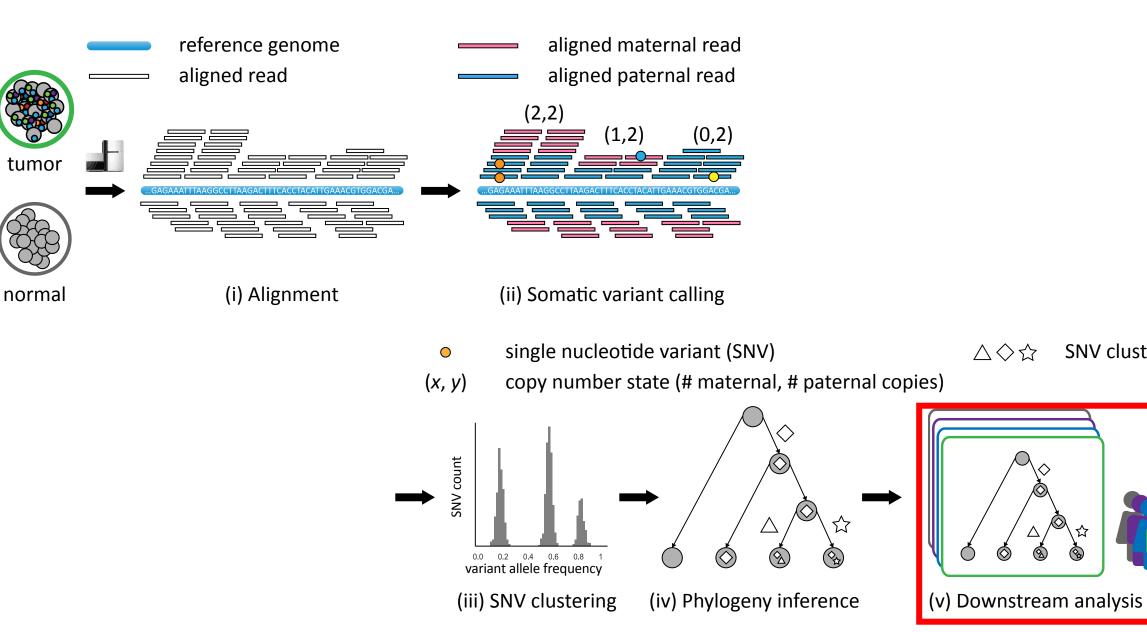
Cancer Phylogenetics Pipeline



(v) Downstream analysis

SNV cluster

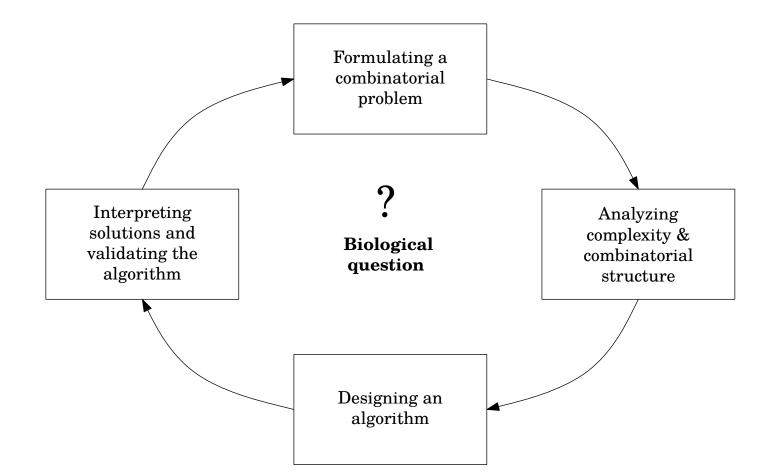
Cancer Phylogenetics Pipeline



SNV cluster

Outline

- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants

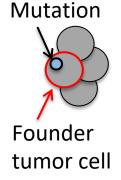


Reading:

- **M. El-Kebir**, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. <u>Nature Genetics</u>, 50:718-726, 2018.
- M. El-Kebir⁺. <u>Parsimonious Migration History Problem: Complexity and Algorithms</u>. WABI 2018, Helsinki, Finland, August 20-22, 2018.

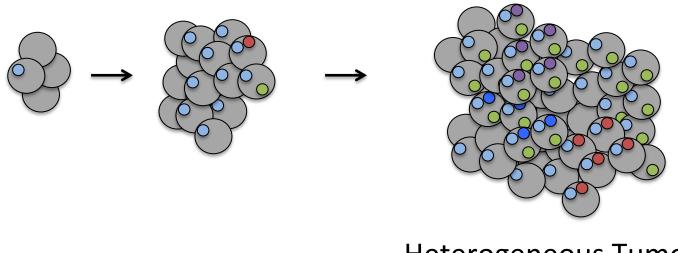
Tumorigenesis: (i) Cell Mutation

Clonal Theory of Cancer [Nowell, 1976]

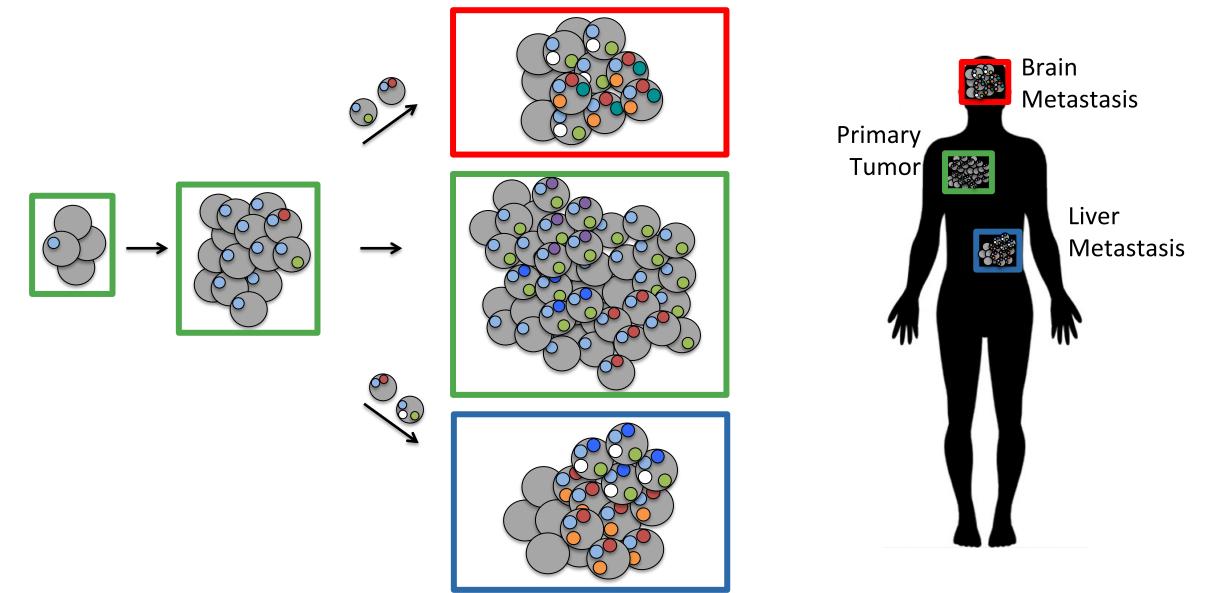


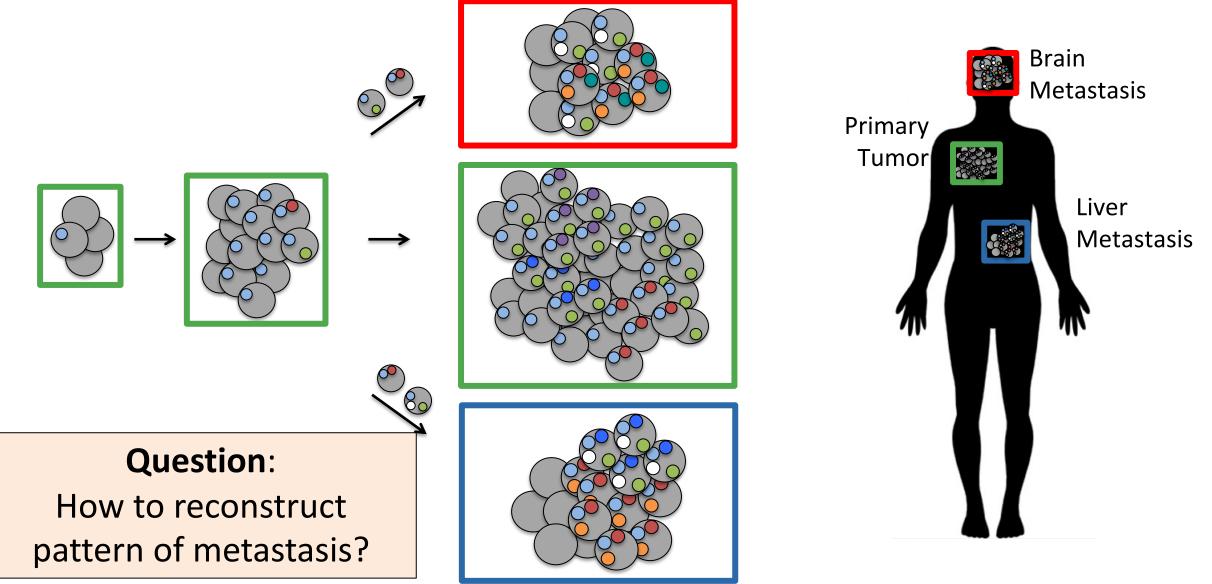
Tumorigenesis: (i) Cell Mutation, (ii) Cell Division

Clonal Theory of Cancer [Nowell, 1976]

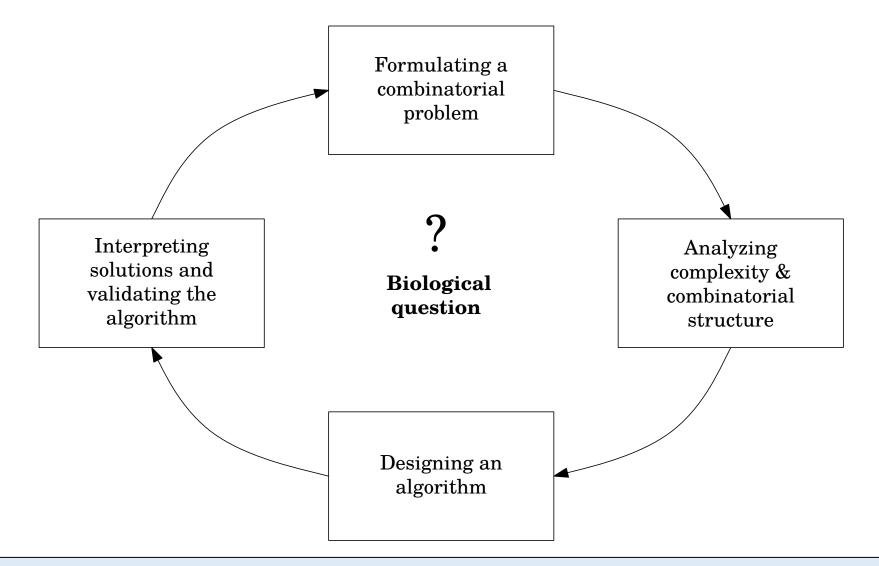


Heterogeneous Tumor

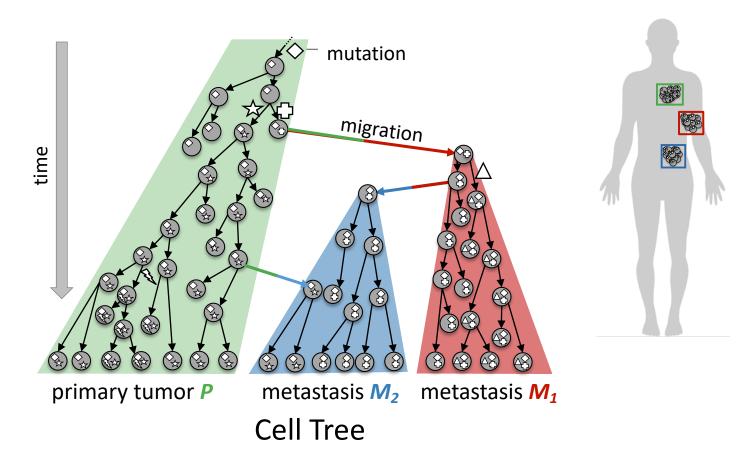


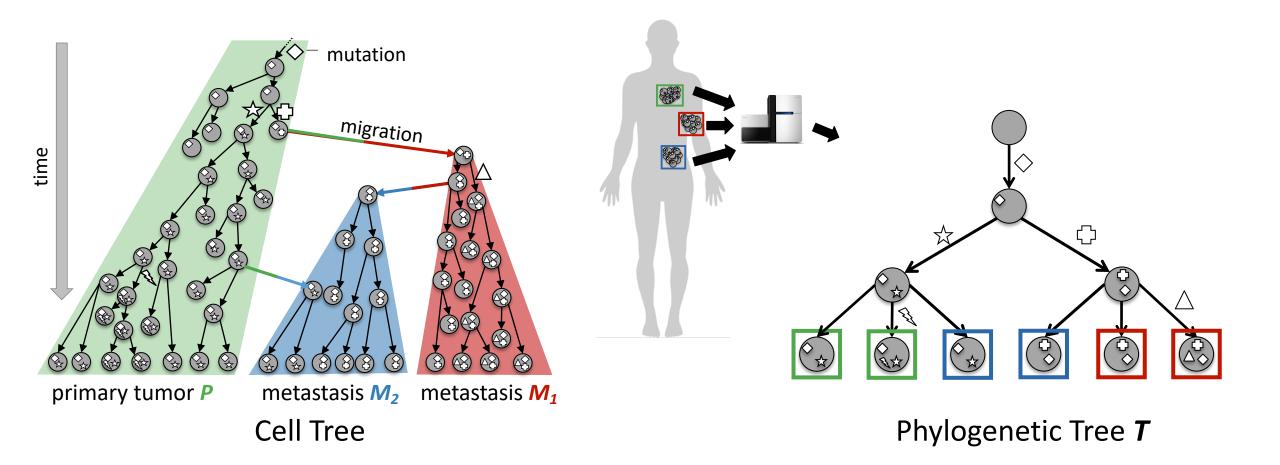


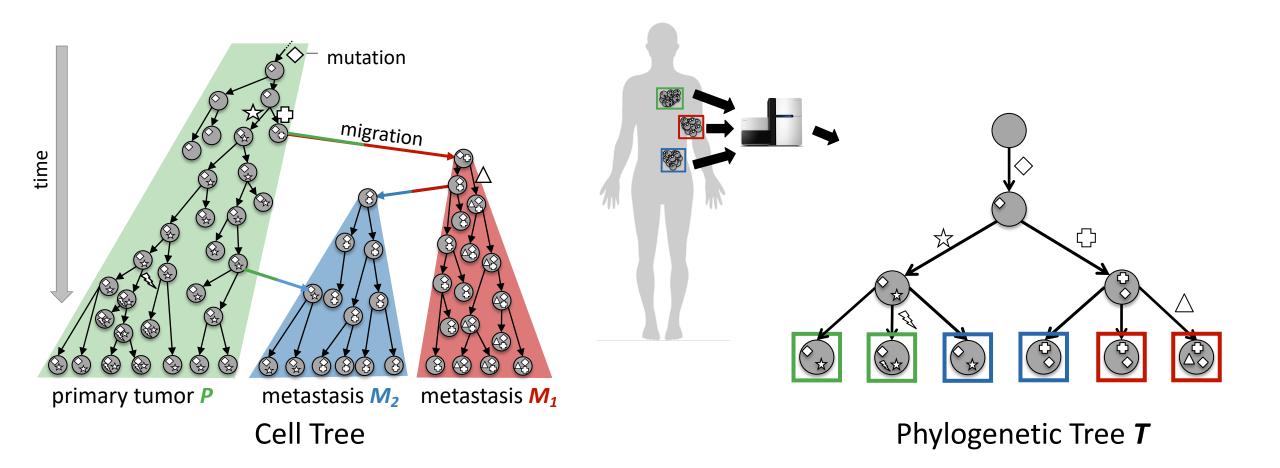
Key Challenge in Computational Biology



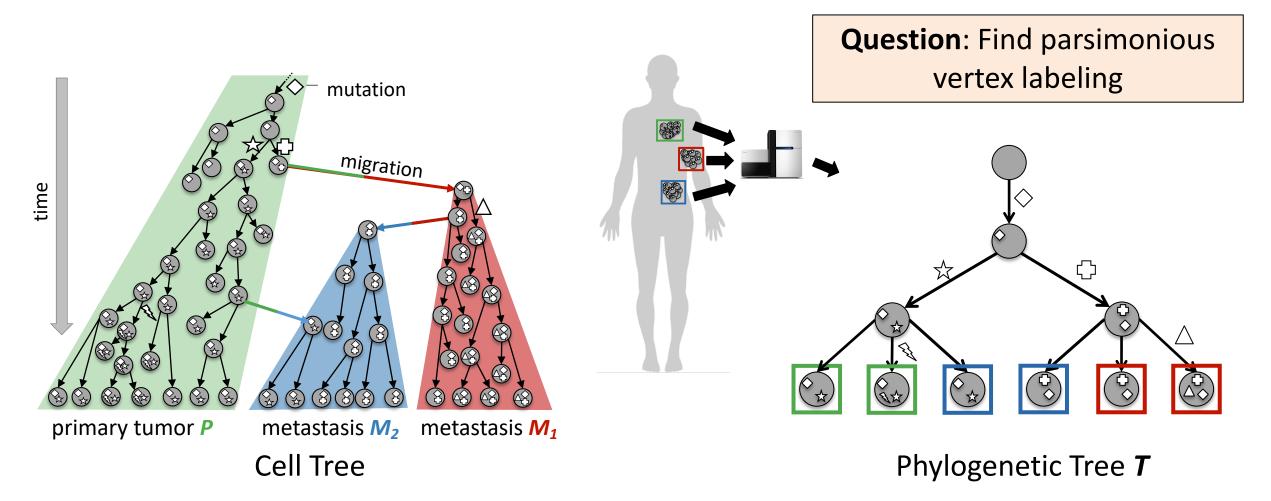
Translating a biological problem into computer science



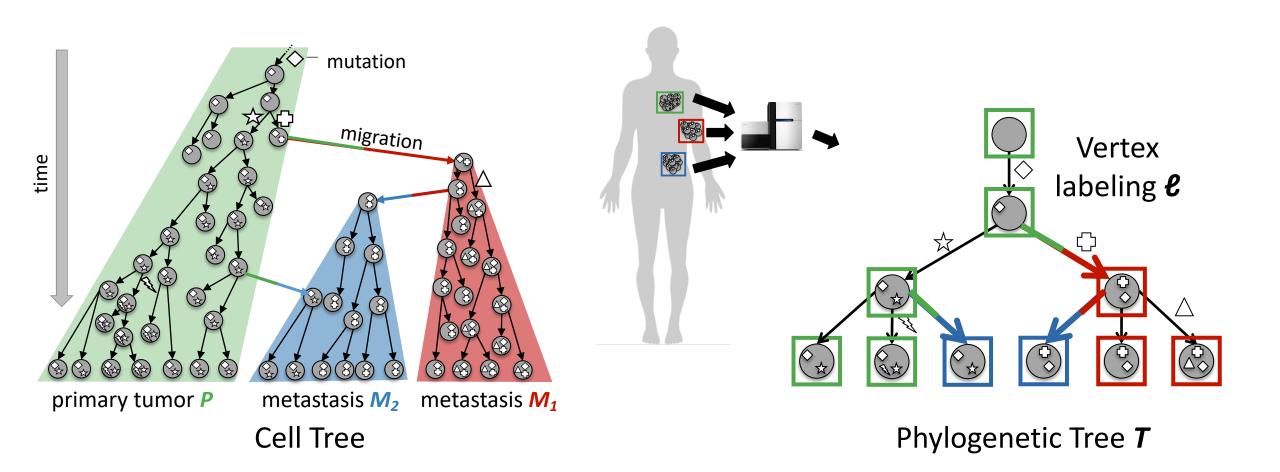




Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *e* with fewest migrations



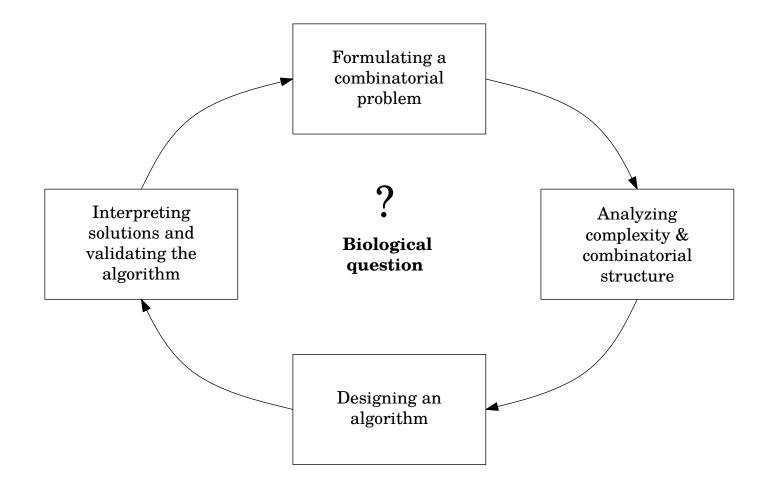
Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *e* with fewest migrations



Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *e* with fewest migrations

Outline

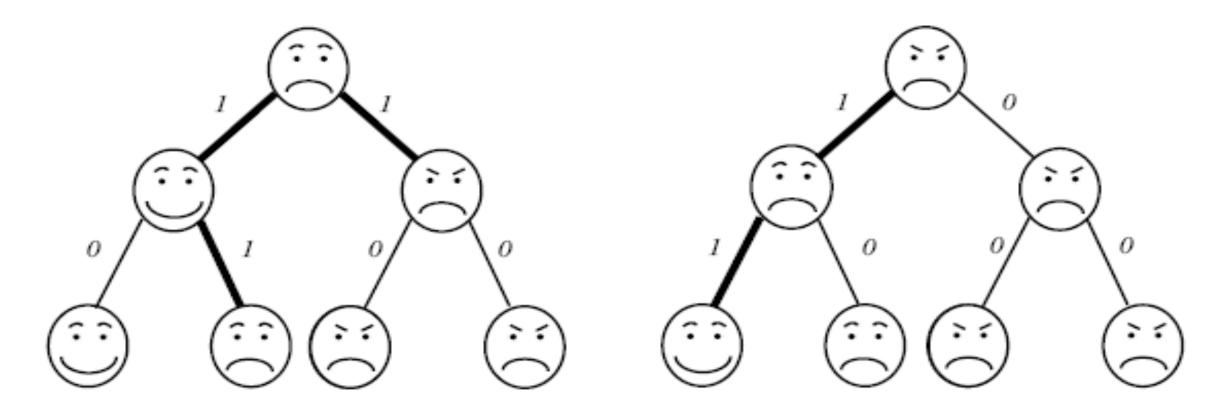
- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants



Reading:

- **M. El-Kebir**, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. <u>Nature Genetics</u>, 50:718-726, 2018.
- M. El-Kebir⁺. <u>Parsimonious Migration History Problem: Complexity and Algorithms</u>. WABI 2018, Helsinki, Finland, August 20-22, 2018.

Character-Based Phylogeny Reconstruction: Criterion



(a) Parsimony Score=3

(b) Parsimony Score=2

Parsimony: minimize number of changes on edges of tree

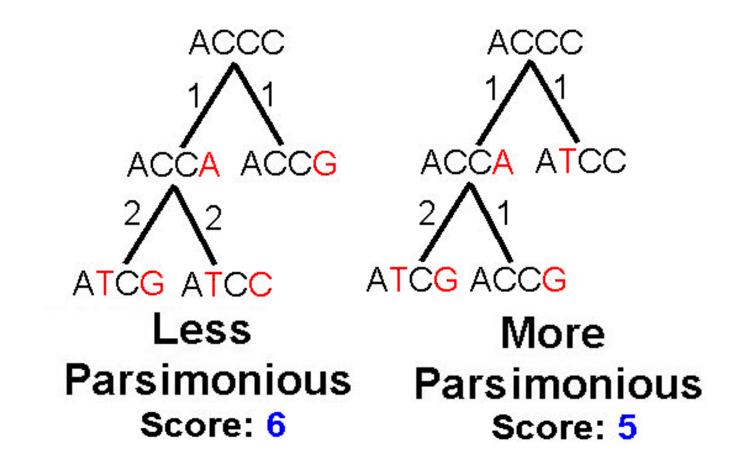
A Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem: Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of Twith minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem: Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?

Small Maximum Parsimony Phylogeny Problem



Key observations: (1) Characters can be solved independently. (2) Optimal substructure in subtrees.

Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:

Given rooted tree T whose leaves are labeled by $\sigma : L(T) \rightarrow \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:

Given rooted tree T whose leaves are labeled by $\sigma : L(T) \rightarrow \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Let $\mu(v, s)$ be the minimum number of mutations in the subtree rooted at vwhen assigning state s to v.

Let $\delta(v)$ be the set of children of v.

Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:

Given rooted tree T whose leaves are labeled by $\sigma : L(T) \rightarrow \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Let $\mu(v, s)$ be the minimum number of mutations in the subtree rooted at vwhen assigning state s to v.

$$c(s,t) = \begin{cases} 0, & \text{if } s = t \\ 1, & \text{if } s \neq t, \end{cases} \quad \text{Let } \delta(v) \text{ be the set of children of } v.$$
$$u(v,s) = \min \begin{cases} \infty, & \text{if } v \in L(T) \text{ and } s \neq \sigma(v), \\ 0, & \text{if } v \in L(T) \text{ and } s = \sigma(v), \\ \sum_{w \in \delta(v)} \min_{t \in \Sigma} \{c(s,t) + \mu(w,t)\}, & \text{if } v \notin L(T). \end{cases}$$

Filling out DP Table and Traceback

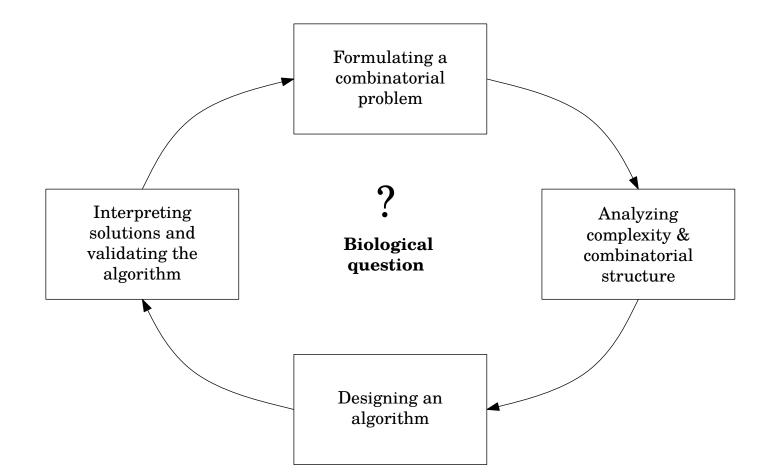
Fill (T, r(1), 6, 2) Filling ant M $Fill(T, v, \varepsilon, \Sigma)$ $O(m|\Sigma|^2)$ if VEL(T) than For se 5 iF S = G(v) then $\mu(v,s) = 0$ $\mu(v,s) = 0$ alse For $w \in S(v)$ // children FI($T, w, \varepsilon, \Sigma$) $\mu(u, \varsigma) = 0$ $\mu(u,s) \neq = \min \sum_{t \in S} \sum_{i=1}^{\infty} c(s,t) + \mu(w,t)^{2}$ For w E S(U)

 $\frac{12}{6} \frac{1}{2} \frac{1$

Let r(T) be the root vertex

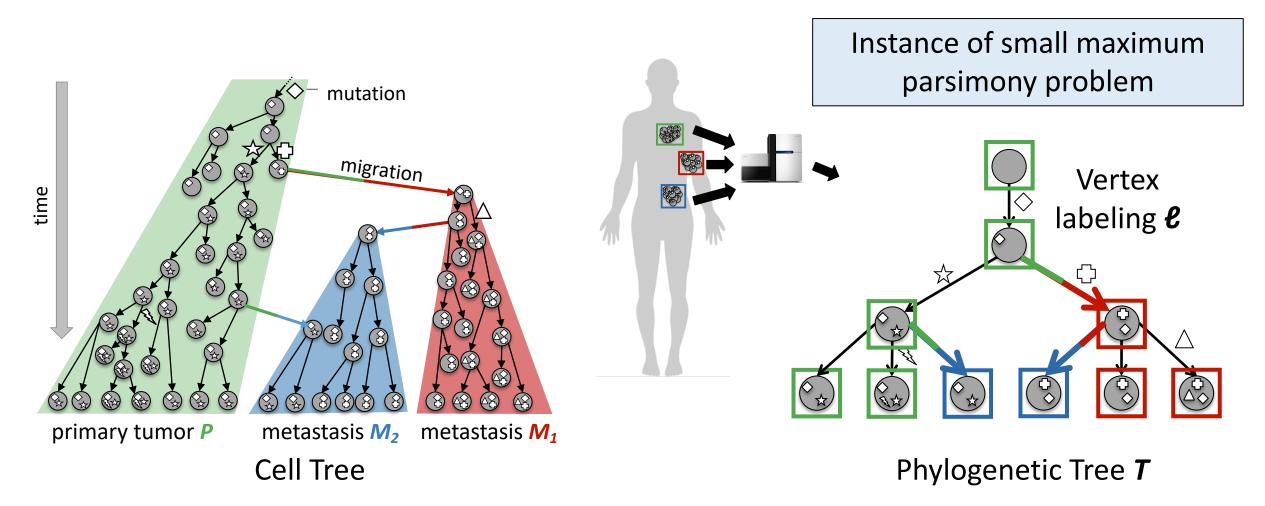
Outline

- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants



Reading:

- **M. El-Kebir**, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. <u>Nature Genetics</u>, 50:718-726, 2018.
- M. El-Kebir⁺. <u>Parsimonious Migration History Problem: Complexity and Algorithms</u>. WABI 2018, Helsinki, Finland, August 20-22, 2018.



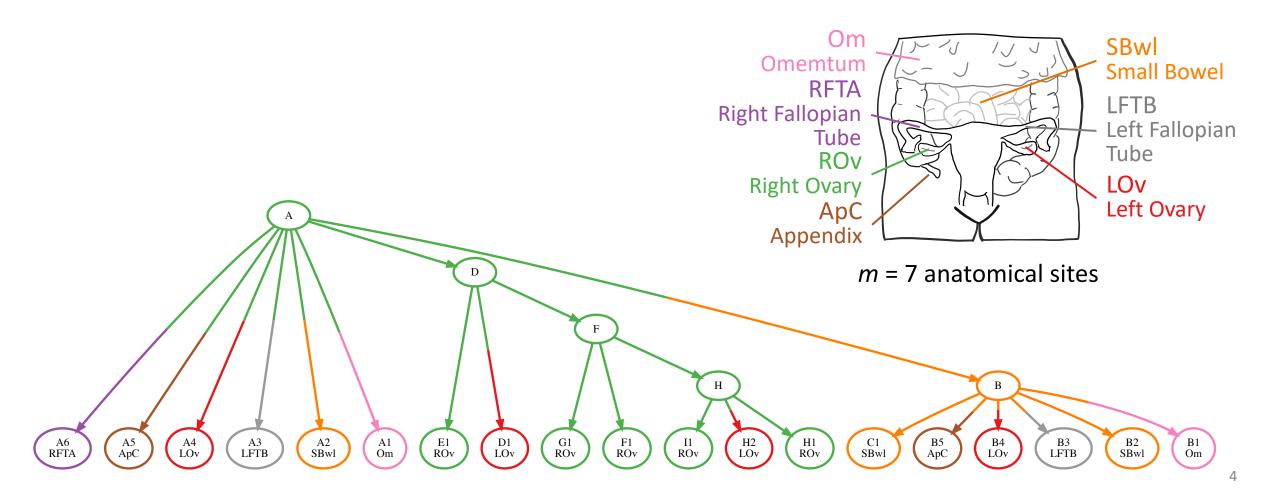
Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *e* with fewest migrations

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. *Genetics*, 123(3), 603–613.

Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nature Genetics*.

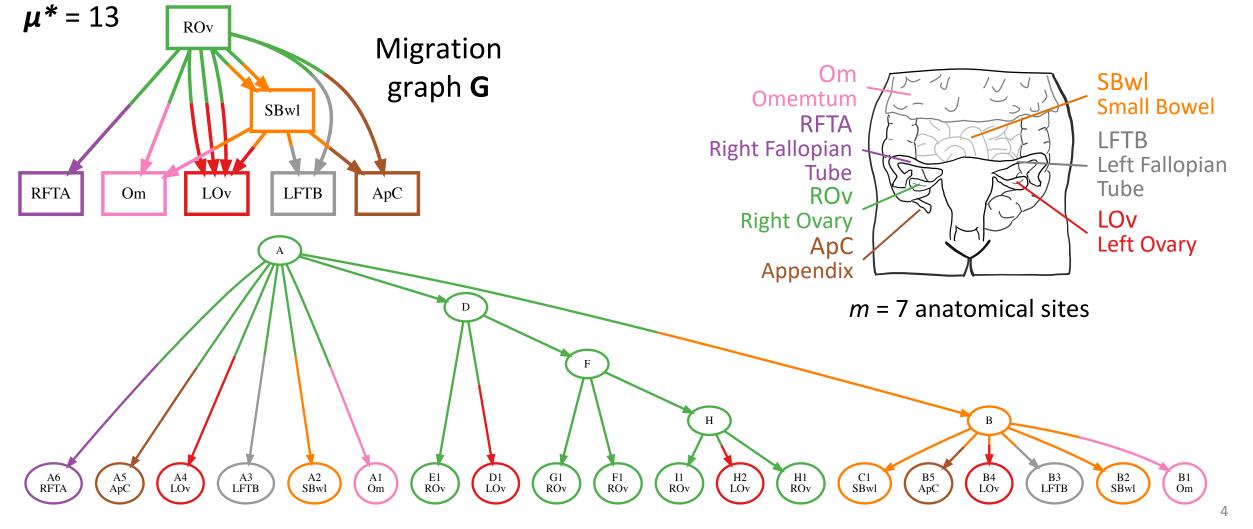
• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



Minimum Migration Analysis in Ovarian Cancer

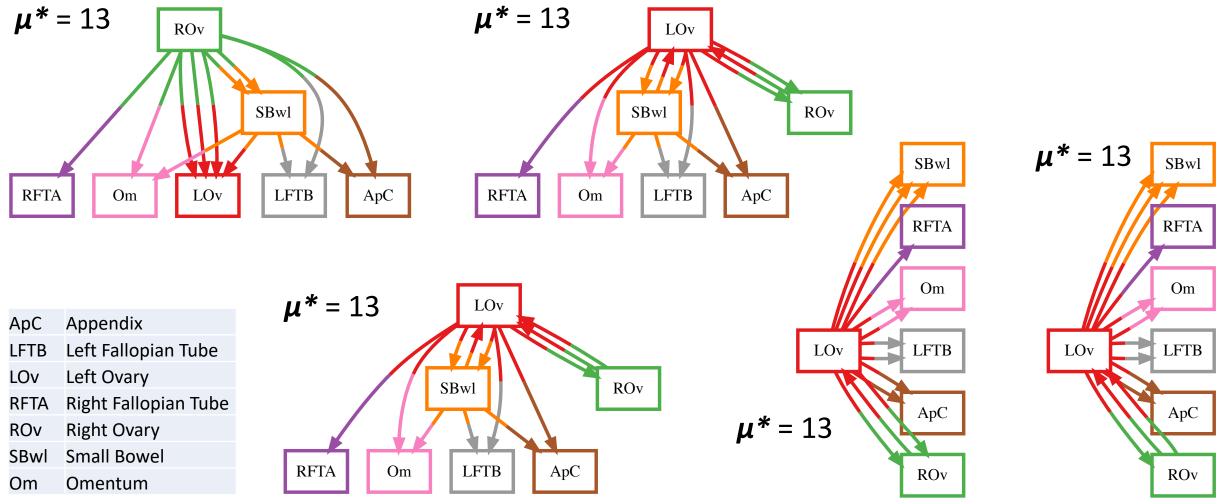
McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nature Genetics*.

• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



Minimum Migration History is Not Unique

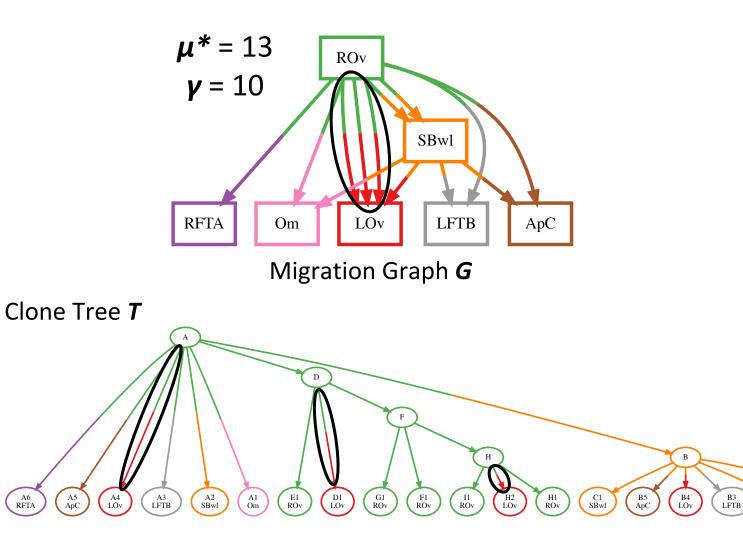
• Enumerate all minimum-migration vertex labelings in the backtrace step

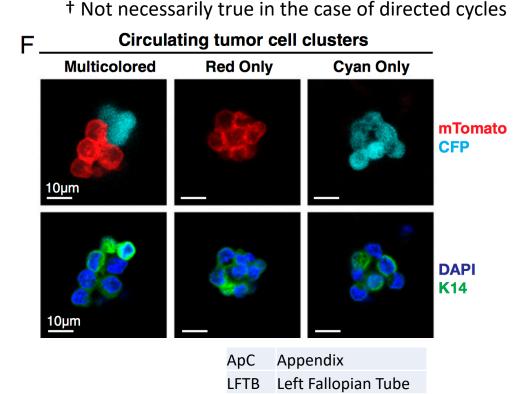


6

Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G^+





LOv

RFTA

ROv

SBwl

Om

B2 SBwl B1 Om Left Ovary

Right Ovary

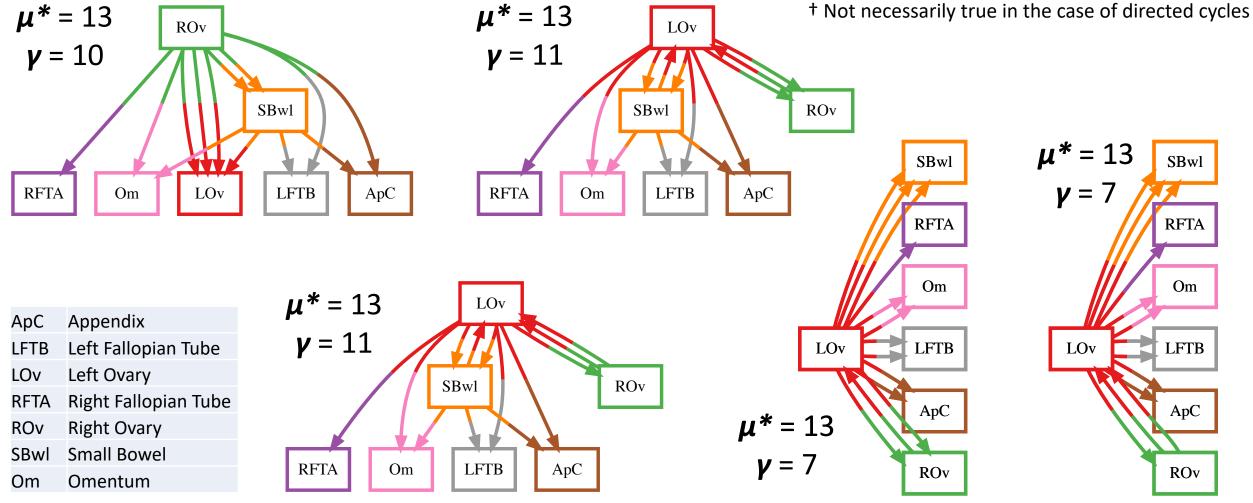
Small Bowel

Omentum

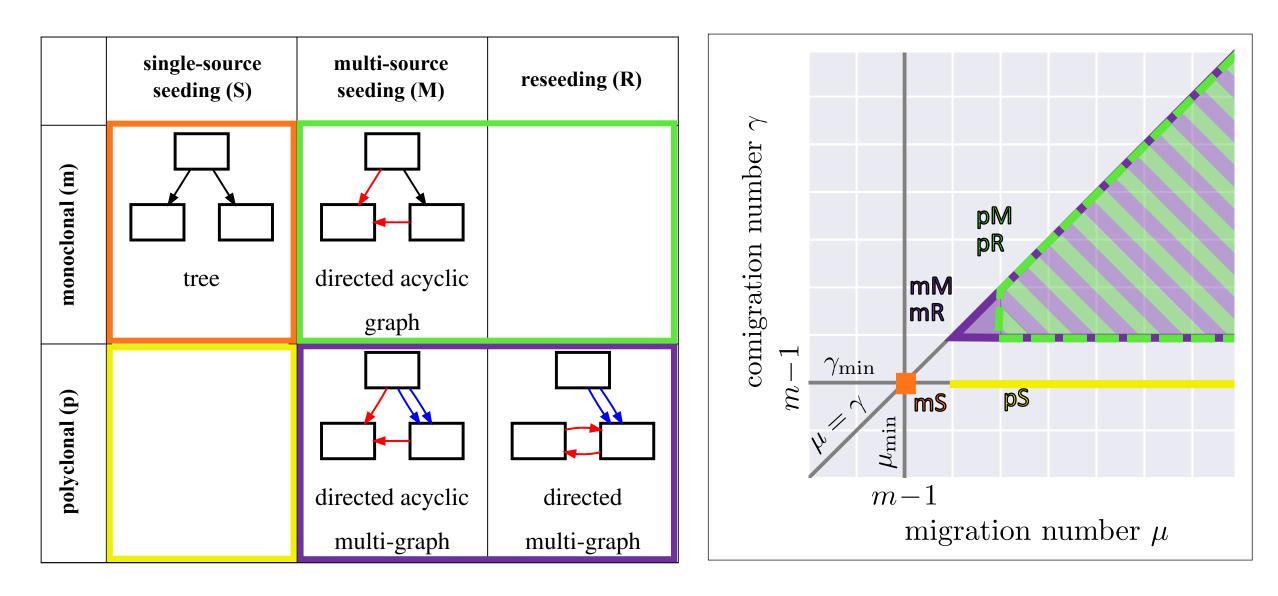
Right Fallopian Tube

Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G^+

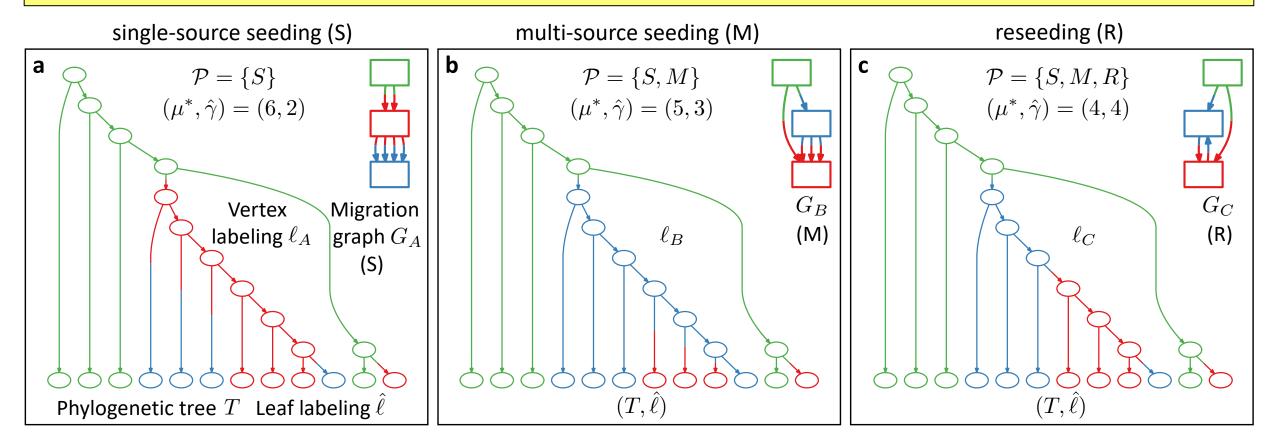


Tradeoffs between Migrations, Comigrations and Migration Pattern



Constrained Multi-objective Optimization Problem

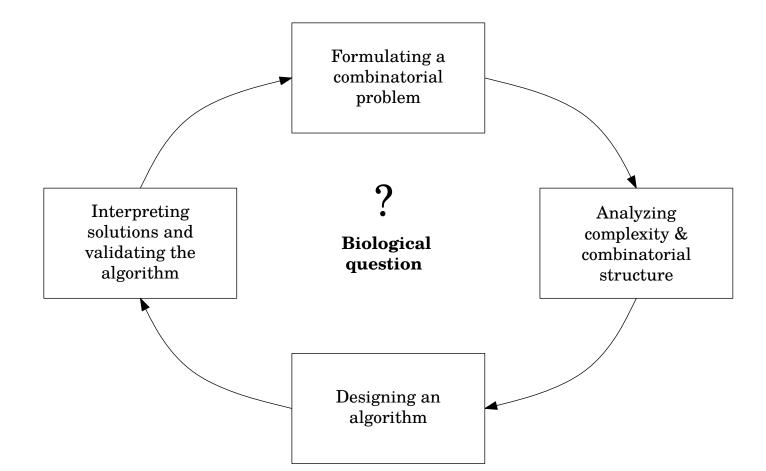
Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\hat{\gamma}(T)$.



El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. *Nature Genetics*, 50(5), 718–726.

Outline

- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants

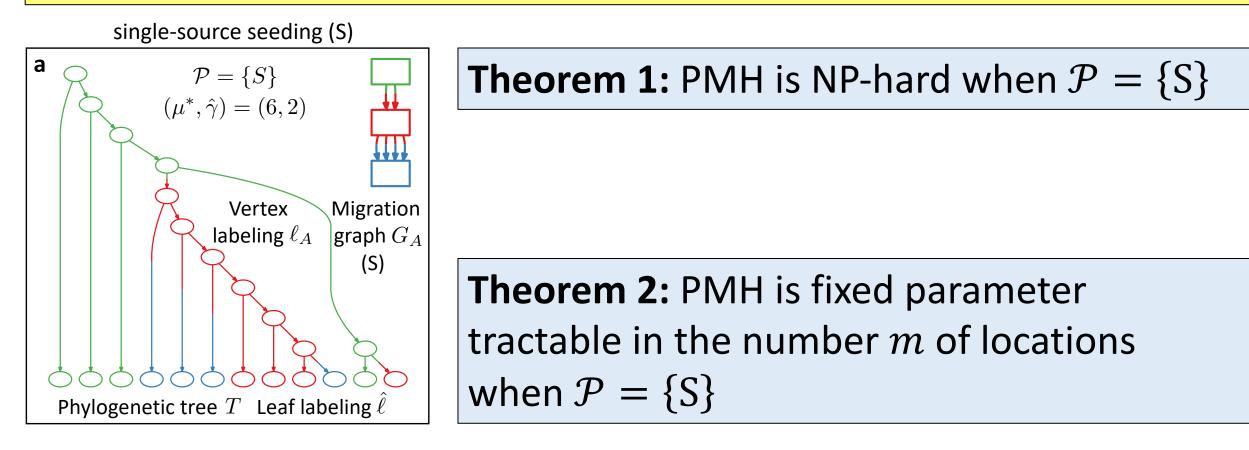


Reading:

- **M. El-Kebir**, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. <u>Nature Genetics</u>, 50:718-726, 2018.
- M. El-Kebir⁺. <u>Parsimonious Migration History Problem: Complexity and Algorithms</u>. WABI 2018, Helsinki, Finland, August 20-22, 2018.

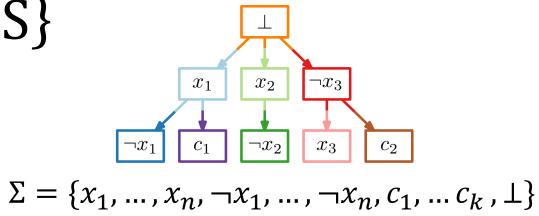
Results [El-Kebir, WABI 2018]

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\hat{\gamma}(T)$.



PMH is NP-hard when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \bigwedge_{i=1}^{k} (y_{i,1} \lor y_{i,2} \lor y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\varphi : [n] \rightarrow \{0,1\}$ satisfying φ

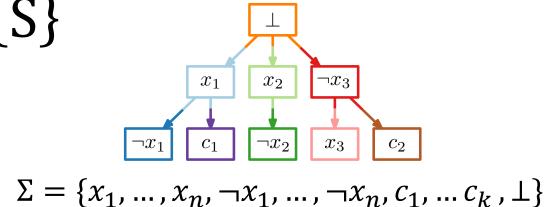


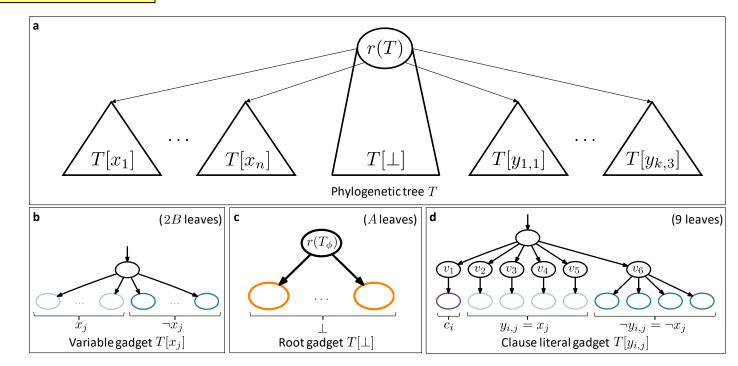
PMH is NP-hard when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \bigwedge_{i=1}^{k} (y_{i,1} \lor y_{i,2} \lor y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\varphi : [n] \rightarrow \{0,1\}$ satisfying φ

Three ideas:

- 1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
- 2. Ensure that $\ell^*(r(T)) = \bot$
- 3. Ensure that ϕ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment



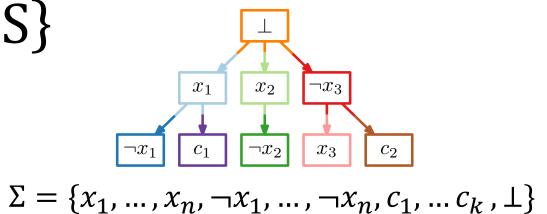


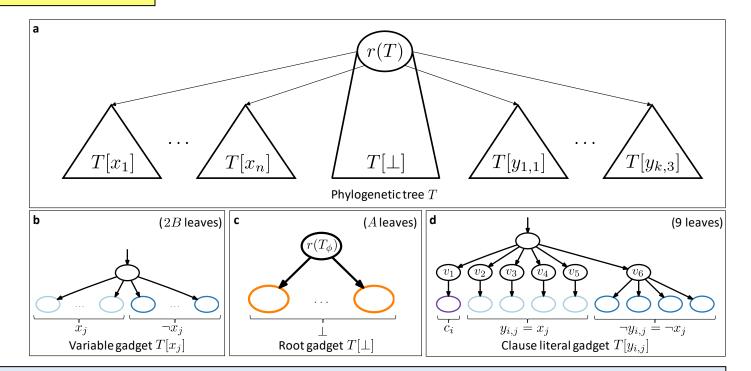
PMH is NP-hard when $\mathcal{P} = \{S\}$

3-SAT: Given $\varphi = \bigwedge_{i=1}^{k} (y_{i,1} \lor y_{i,2} \lor y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\varphi : [n] \rightarrow \{0,1\}$ satisfying φ

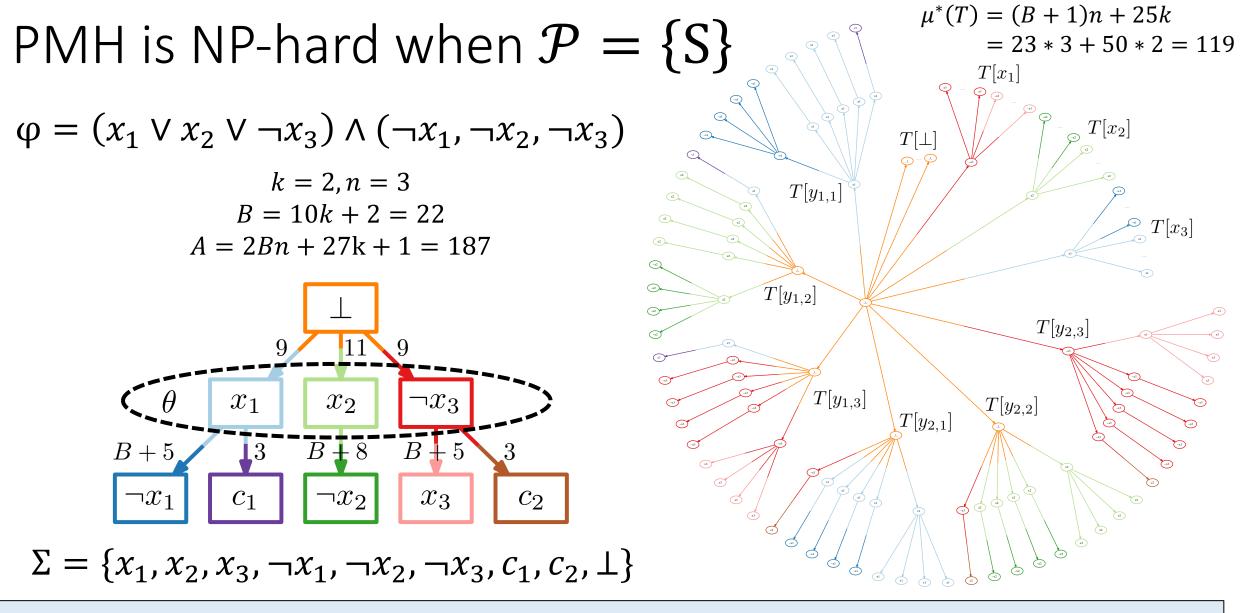
Three ideas:

- 1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
- 2. Ensure that $\ell^*(r(T)) = \bot$
- 3. Ensure that ϕ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment



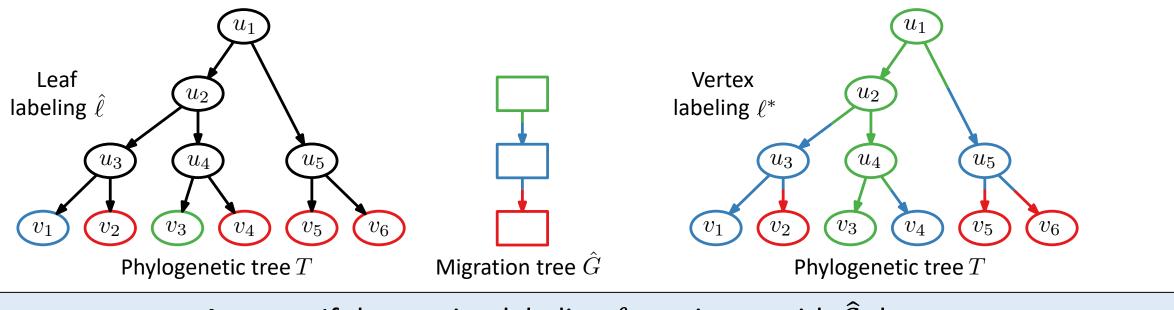


Lemma: Let B > 10k + 1 and A > 2Bn + 27k. Then, φ is satisfiable if and only if $\mu^*(T) = (B + 1)n + 25k$



Lemma: Let B > 10k + 1 and A > 2Bn + 27k. Then, φ is satisfiable if and only if $\mu^*(T) = (B + 1)n + 25k$

PMH is FPT in number m of locations when $\mathcal{P} = \{S\}$

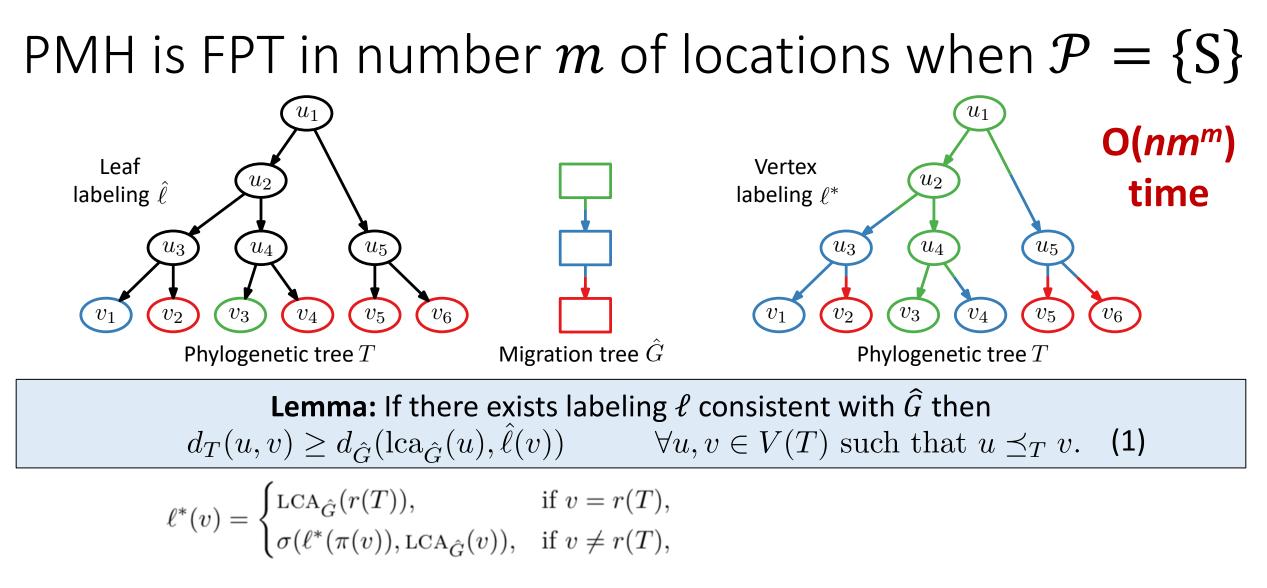


Lemma: If there exists labeling ℓ consistent with \hat{G} then $d_T(u,v) \ge d_{\hat{G}}(\operatorname{lca}_{\hat{G}}(u), \hat{\ell}(v)) \qquad \forall u, v \in V(T) \text{ such that } u \preceq_T v.$ (1)

$$\ell^*(v) = \begin{cases} \operatorname{LCA}_{\hat{G}}(r(T)), & \text{if } v = r(T), \\ \sigma(\ell^*(\pi(v)), \operatorname{LCA}_{\hat{G}}(v)), & \text{if } v \neq r(T), \end{cases}$$

where $\sigma(s,t) = s$ if s = t and otherwise $\sigma(s,t)$ is the unique child of s that lies on the path from s to t in \hat{G} .

Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \widehat{G} .

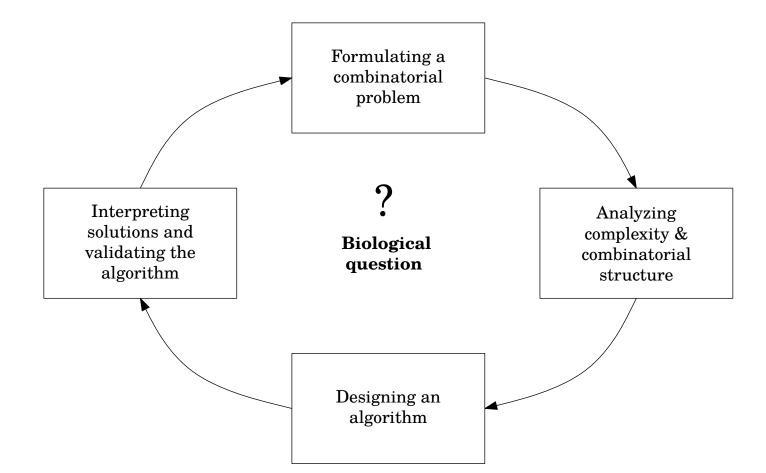


where $\sigma(s,t) = s$ if s = t and otherwise $\sigma(s,t)$ is the unique child of s that lies on the path from s to t in \hat{G} .

Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \widehat{G} .

Outline

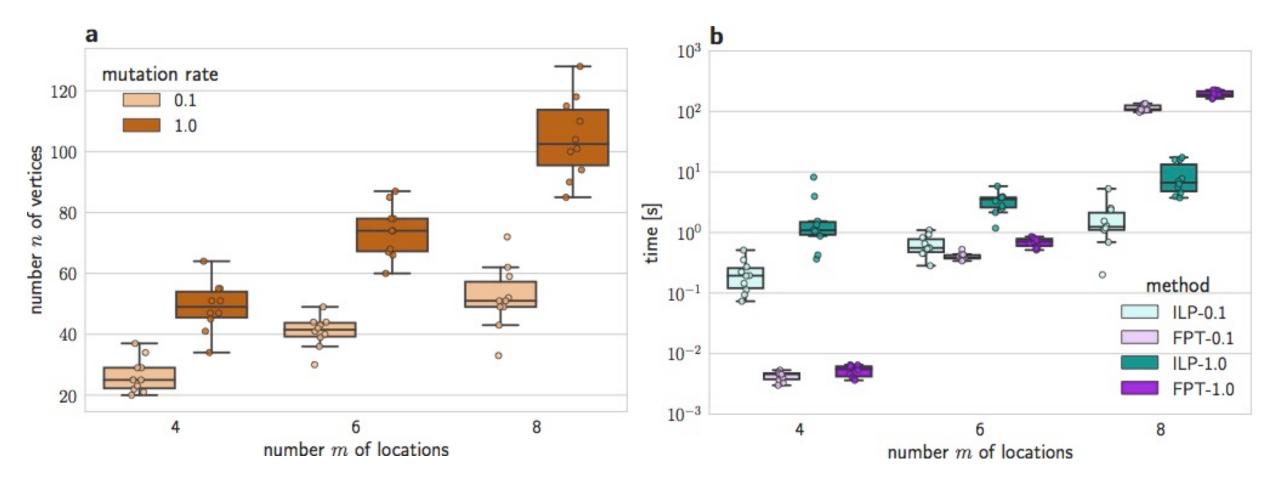
- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants



Reading:

- **M. El-Kebir**, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. <u>Nature Genetics</u>, 50:718-726, 2018.
- M. El-Kebir⁺. <u>Parsimonious Migration History Problem: Complexity and Algorithms</u>. WABI 2018, Helsinki, Finland, August 20-22, 2018.

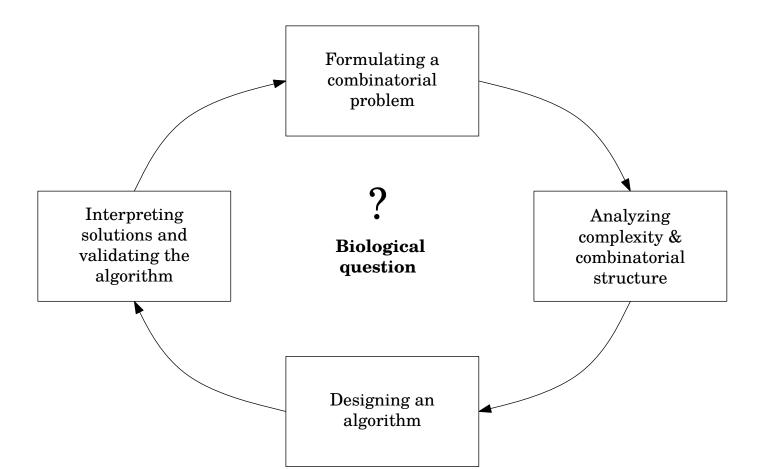
Simulations



Available on: https://github.com/elkebir-group/PMH-S

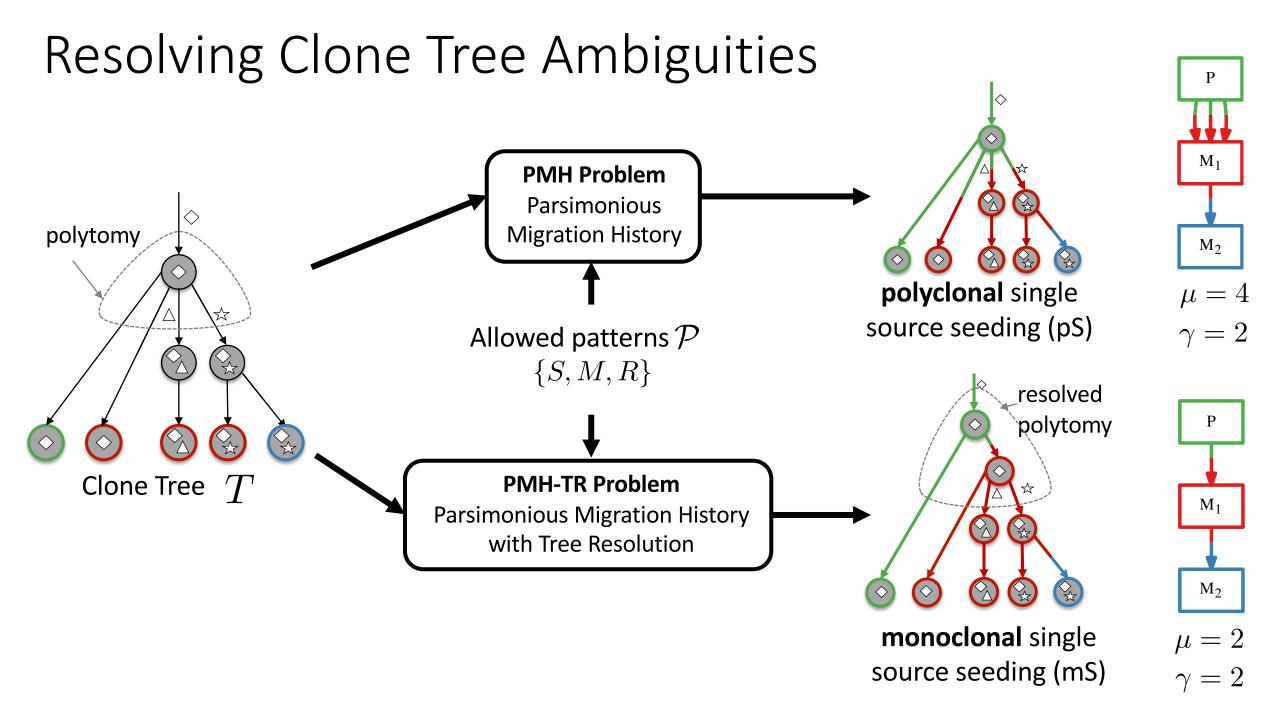
Outline

- Metastasis
- Maximum parsimony
- Problem statement
- Complexity
- Algorithm & results
- Problem variants

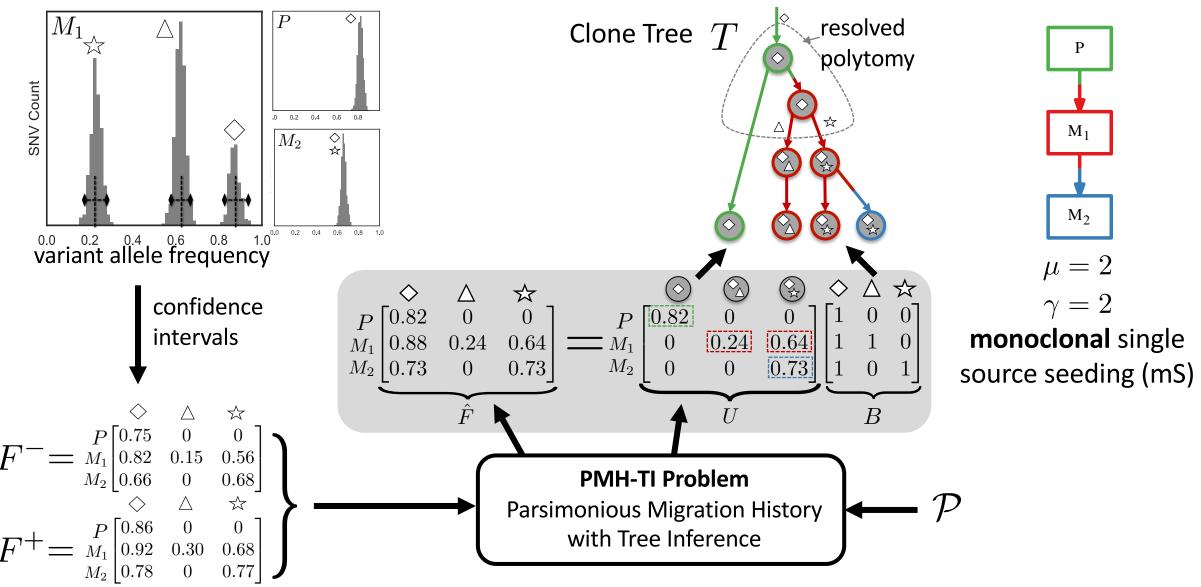


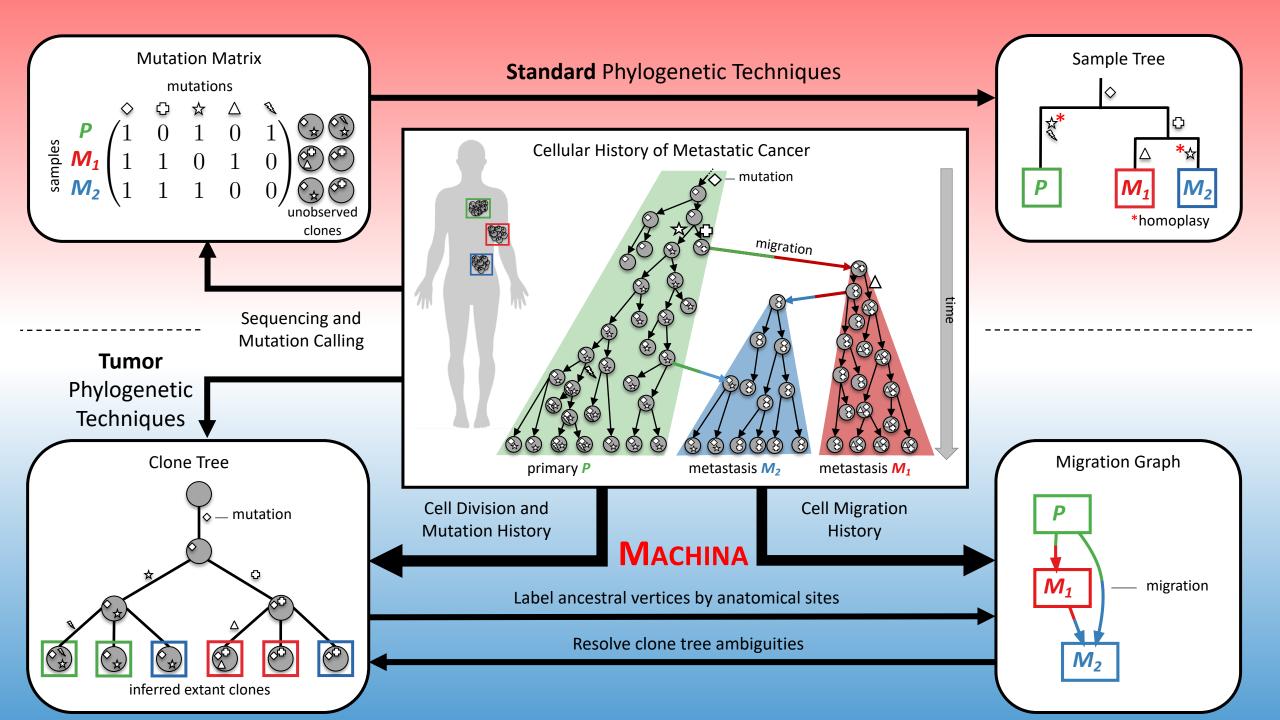
Reading:

- **M. El-Kebir**, G. Satas and B.J. Raphael. Inferring parsimonious migration histories for metastatic cancers. <u>Nature Genetics</u>, 50:718-726, 2018.
- M. El-Kebir⁺. <u>Parsimonious Migration History Problem: Complexity and Algorithms</u>. WABI 2018, Helsinki, Finland, August 20-22, 2018.

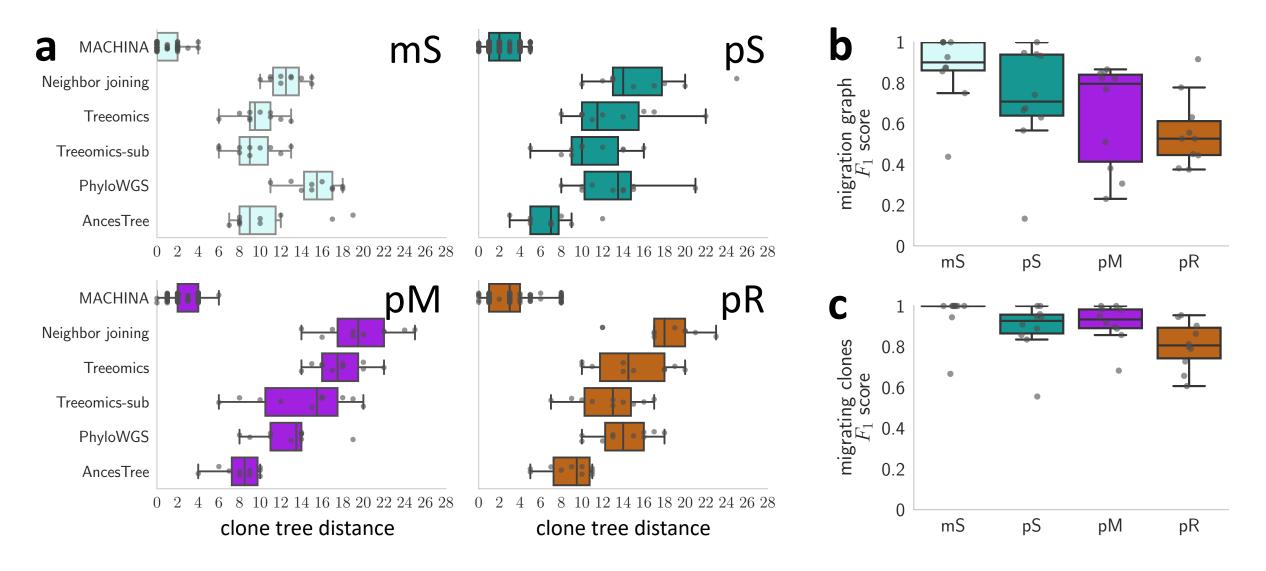


Resolving Clone Tree Ambiguities

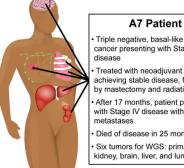




MACHINA accurately infers clone trees and migration histories on simulated data



Applying MACHINA to Metastatic Breast Cancer



 Triple negative, basal-like breast cancer presenting with Stage IIIA Freated with neoadiuvant AC-1 achieving stable disease, followed by mastectomy and radiation After 17 months, patient presented with Stage IV disease with 7 distant Died of disease in 25 months Six tumors for WGS: primary, rib, kidney, brain, liver, and lung

Hoadley et al. **Tumor Evolution in Two** Patients with Basal-like Breast Cancer: A Retrospective Genomics Study of Multiple Metastases. PLOS Med, 13(12) 2016

