CS 466 - Introduction to Bioinformatics - Lecture 2

Mohammed El-Kebir

September 8, 2023

Document history:

- 9/5/2018: Fixed typo in Section ??, $O\left(4^{n} / n\right)$ should have been $O\left(4^{n} / \sqrt{n}\right)$.
- $9 / 5 / 2018$: Included analysis of naive fitting alignment algorithm.
- 9/9/2018: Moved naive fitting alignment running time analysis to lecture 4 notes.
- 8/30/2019: Minor changes in Section 1.2.
- $9 / 8 / 2023:$ Wrong sign in inequality.

Contents

1 Big Oh Notation

Let $f, g: \mathbb{N}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0}$. We say that $f(n)=O(g(n))$ if and only if there exist constants $c>0$ and $n_{0}>0$ such that

$$
\begin{equation*}
f(n) \leq c \cdot g(n), \quad \text { for all } n \geq n_{0} \tag{1}
\end{equation*}
$$

1.1 What is $O(n!)$?

Recall that $n!=\prod_{i=1}^{n} i$. If we multiply this out, the largest term that will apear will be n^{n}. Thus, $n!=O\left(n^{n}\right)$ might be a good guess. In other words, we claim that there exist constants $c, n_{0}>0$ such that $n!\leq c n^{n}$. Pick $c=1$ and $n_{0}=1$. The claim now becomes $n!\leq n^{n}$ for all integers $n \geq 1$. We proof this by induction on n.

- Base case: $n=1$. It follows that $1!=1 \leq 1^{1}=1$.
- Step: $n>1$. The induction hypothesis ${ }^{1}$ is that $(n-1)$! $=(n-1)^{n-1}$. We thus have

$$
\begin{align*}
n! & =n(n-1)! \tag{2}\\
& =n(n-1)^{n-1} \tag{3}\\
& <n n^{n-1} \tag{4}\\
& =n^{n} . \tag{5}
\end{align*}
$$

[^0]Note that (??) follows from the induction hypothesis.
Alternatively, we can use Stirling's approximation, which is defined as

$$
\begin{equation*}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \tag{6}
\end{equation*}
$$

Simple algebra yields

$$
\begin{equation*}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}=\sqrt{2 \pi} \frac{\sqrt{n}}{\exp (n)} n^{n} \tag{7}
\end{equation*}
$$

Using that $\sqrt{n}<\exp (n)$ for all $n>0$, we obtain

$$
\begin{equation*}
\sqrt{2 \pi} \frac{\sqrt{n}}{\exp (n)} n^{n}<\sqrt{2 \pi} n^{n}=O\left(n^{n}\right) \tag{8}
\end{equation*}
$$

We have that $n!=O\left(n^{n}\right)$, which can be rewritten as $O\left(2^{n \log n}\right)$. Note that $O\left(2^{n}\right) \subset$ $O\left(2^{n \log n}\right)$.

1.2 What is $O(\log (n!))$?

Left as an exercise. Hint: use Stirling's approximation, or try to compute an upper bound directly.

1.3 What is $O\left(\binom{n}{k}\right)$ where $k=O(1)$?

This expression arises when we have nested for loops. For instance, the running of the pseudo code below is $O\left(\binom{n}{2}\right)$.

```
for i in {1, ..., n}
    for j in {i+1, ..., n}
        Constant time computation;
```

Recall that $\binom{n}{k}=\frac{n!}{(n-k)!k!}$. Thus, in the above case we have that $O\left(\binom{n}{2}=O(n(n-1) / 2)=\right.$ $O\left(n^{2}\right)$. Can we generalize this to arbitrary constant k (e.g. a k-nested for loop)?

$$
\begin{equation*}
\binom{n}{k}=\frac{n!}{(n-k)!k!}=\frac{1}{k!} \frac{n!}{(n-k)!} \tag{9}
\end{equation*}
$$

Since $k=O(1)$, we have that $\frac{1}{k!}=O(1)$, yielding

$$
\begin{equation*}
\binom{n}{k}=O(n!/(n-k)!) \tag{10}
\end{equation*}
$$

Observe that $n!/(n-k)!=n(n-1) \ldots(n-k+1)$. We can rewrite this as

$$
\begin{align*}
n(n-1) \ldots(n-k+1) & =n^{k} \cdot \frac{n-1}{n} \ldots \frac{n-k+1}{n} \tag{11}\\
& =n^{k}\left(1\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k}{n}\right)\right) \tag{12}
\end{align*}
$$

Now for constant k, we have that $\lim _{n \rightarrow \infty}\left(1\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k}{n}\right)\right)=1$. Hence, $\binom{n}{k}=O\left(n^{k}\right)$ for constant k.

1.4 What is $O\left(\binom{2 n}{n}\right)$?

What if $k=O(n)$? We have seen this before. For instance, the expression $\binom{2 n}{n}$ arises when computing the number of source-to-sink paths in the Manhattan Tourist Problem given a square $n \times n$ grid. Can we simplify this equation?

Using that $\binom{n}{k}=\frac{n!}{(n-k)!k!}$, we have

$$
\begin{equation*}
\binom{2 n}{n}=\frac{(2 n)!}{n!n!}=\frac{(2 n)!}{(n!)^{2}} \tag{13}
\end{equation*}
$$

We now use Stirling's approximation, yielding

$$
\begin{align*}
\frac{(2 n)!}{(n!)^{2}} & \approx \frac{\sqrt{2 \pi 2 n}\left(\frac{2 n}{e}\right)^{2 n}}{\left[\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\right]^{2}} \tag{14}\\
& =\frac{\sqrt{2} \cdot \sqrt{2 \pi n} \cdot(2 n)^{2 n} / e^{2 n}}{2 \pi n \cdot n^{2 n} / e^{2 n}} \tag{15}\\
& =\frac{\sqrt{2} \cdot 4^{n} \cdot n^{2 n}}{\sqrt{2 \pi n} \cdot n^{2 n}} \tag{16}\\
& =4^{n} / \sqrt{\pi n} . \tag{17}
\end{align*}
$$

Thus, $\binom{2 n}{n}=O\left(4^{n} / \sqrt{n}\right)$.

[^0]: ${ }^{1}$ Do not forget to state the induction hypothesis!

