CS 466 — Introduction to Bioinformatics — Lecture 2

Mohammed El-Kebir
September 8, 2023

Document history:
9/5/2018: Fixed typo in Section ??, O(4"/n) should have been O(4"/+/n).

9/5/2018: Included analysis of naive fitting alignment algorithm.

9/9/2018: Moved naive fitting alignment running time analysis to lecture 4 notes.

8/30/2019: Minor changes in Section 1.2.

9/8/2023: Wrong sign in inequality.
Contents

1 Big Oh Notation

Let f,g: N20 — R20. We say that f(n) = O(g(n)) if and only if there exist constants ¢ > 0
and ng > 0 such that

f(n) <c-g(n), for all n > ny. (1)

1.1 What is O(n!)?

Recall that n! = []_, ¢. If we multiply this out, the largest term that will apear will be n".
Thus, n! = O(n™) might be a good guess. In other words, we claim that there exist constants
¢,ng > 0 such that n! < en™. Pick ¢ = 1 and ng = 1. The claim now becomes n! < n™ for all
integers n > 1. We proof this by induction on n.

e Base case: n = 1. It follows that 1! =1 < 1! = 1.

e Step: n > 1. The induction hypothesis' is that (n — 1)! = (n — 1)"~'. We thus have

n!=n(n—1)! (2)
=n(n—1)"" (3)
< nn"? (4)
=n". (5)

Do not forget to state the induction hypothesis!

Note that (??) follows from the induction hypothesis. O

Alternatively, we can use Stirling’s approximation, which is defined as

n! ~ V2mn <g>n (6)

Simple algebra yields

n! ~ V2mn <E>n =V2r Vn n'". (7)

e exp(n)
Using that y/n < exp(n) for all n > 0, we obtain
s Vn n" <V2mn" = 0(n"). (8)
exp(n)

We have that n! = O(n"), which can be rewritten as O(2"°6™). Note that O(2") C
O(znlogn)'

1.2 What is O(log(n!))?

Left as an exercise. Hint: use Stirling’s approximation, or try to compute an upper bound
directly.

1.3 What is O((})) where k= O(1)?

This expression arises when we have nested for loops. For instance, the running of the pseudo
code below is O((3)).

for i in {1, ..., n}
for j in {i+1, ..., n}
Constant time computation;

Recall that (}) = (n+k:)'k:' Thus, in the above case we have that O((}) = O(n(n—1)/2) =

O(n?). Can we generalize this to arbitrary constant k (e.g. a k-nested for loop)?

n n! 1 n!
(k) T —RK Kn—k)! (9)

Since k = O(1), we have that £ = O(1), yielding

(Z) — O(n!/(n — k). (10)

Observe that n!/(n — k)l =n(n—1)...(n —k+1). We can rewrite this as

-1 — 1
nn = 1) =k)=t o :* (11)

(o)) e

Now for constant k, we have that lim,,_, (1 (1 — %) e (1 — %)) = 1. Hence, (”) = O(nk)
for constant k.

1.4 What is O((*"))?

What if £ = O(n)? We have seen this before. For instance, the expression (2:) arises when
computing the number of source-to-sink paths in the Manhattan Tourist Problem given a

square n X n grid. Can we simplify this equation?
Using that (Z) = 1 we have

= k)R
(%) 2n)! (2n)!

n

nln! (n!)?

We now use Stirling’s approximation, yielding

\/§ V27 - (2n)%" /e

27 - n2” / e2n

\/_

21 - n2”
= 4" /\/7n.

Thus, (*') = O(4"/\/n).

(13)

