
CS 466 – Introduction to Bioinformatics
Lecture 7

Mohammed El-Kebir

September 16, 2020

Document history:

• 10/3/2018: Initial version

• 10/17/2018: Fixed incorrect running time of tree alignment

• 10/17/2018: Typos

• 10/25/2018: Typos

• 9/18/2019: Removed “Tree and Star Alignments” section

• 9/16/2020: ‘Carrillo’ −→ ‘Carrillo’

Contents

1 Problem Statement 1

2 Carrillo-Lipman Algorithm 2

1 Problem Statement

Let Σ be the alphabet. We are given k strings v1, . . . ,vk ∈ Σ∗. A multiple alignment
A = [ap,i] is defied as an k× ℓ matrix where ℓ ∈ {maxp∈[k]{|vp}, . . . ,

!k
p=1 |vp|} such that (i)

each entry ap,i is a character from the gap-extended alphabet Σ ∪ {−}, (ii) removal of the
gap characters from each row ap yields input string vp and (iii) there is no column j ∈ [ℓ]
consisting of only gap characters in A, i.e. ap,j = − for all p ∈ [k].

We consider the Sum-of-Pairs (SP) score SP(A), which uses a given pairwise scoring
function δ : (Σ ∪ {−}) × (Σ ∪ {−}) → R to score every column of an alignment A by
considering all pairs of input sequences. Specifically, SP(A) is defined as

SP(A) =
k"

p=1

k"

q=p+1

ℓ"

i=1

δ(ap,i, aq,i). (1)

We have the following two problems.

1

Problem 1. Weighted SP-Edit Distance Given strings v1, . . . ,vk ∈ Σ∗ and a scoring
function δ : (Σ ∪ {−}) × (Σ ∪ {−}) → R, find a multiple alignment A such that SP(A) is
minimum.

Problem 2. SP-Global Alignment Given strings v1, . . . ,vk ∈ Σ∗ and a scoring function
δ : (Σ ∪ {−})× (Σ ∪ {−}) → R, find a multiple alignment A such that SP(A) is maximum.

Observe that the two problems differ only in the direction of their objective functions,
minimization vs. maximization.

2 Carrillo-Lipman Algorithm

We consider the Weighted SP-Edit Distance problem. Extending results from previous
lectures, an optimal alignment for this problem is a shortest path from source (0, . . . , 0)
to sink (|v1|, . . . , |vk|) in the edit graph. Thus, we could identify this shortest path using
a shortest path algorithm. In particular, if the cost function δ assigns non-negative costs
(which is the common case for this problem), we could use Dijkstra’s algorithm.

Dijkstra’s algorithm maintains a priority queue of unvisited vertices, where each vertex v
has a priority p(v) corresponding to the length of the shortest path computed thus far
from the source vertex v0 to v. Initially, the queue contains only the source vertex v0 with
priority p(v0) = 0. The priority of the other vertices v ∕= v0 is set to p(v) = ∞. We pop
a vertex v from the queue with lowest priority p(v), and then update the priorities of its
unvisited neighboring vertices w. Specifically, we set p(w) := p(v) + δ(v, w) and π(w) = v
if p(w) > p(v) + δ(v, w), and add w to the queue if it had not been there already. Next,
we mark v as visited and repeat the procedure until the queue is empty. Each value π(v)
indicates the parent vertex of w on the shortest path from v0 to v. (Note that the above
description differs slightly from the original formulation of Dijkstra’s algorithm, where the
queue contains all vertices initially.)

This algorithm will identify the optimal alignment when run on the edit graph of an
instance of Weighted SP-Edit Distance with non-negative costs. While with dynamic
programming we were filling out the table in a backward manner, i.e. for each cell (i1, . . . , ik)
we considering its incoming edges, Dijkstra’s algorithm fills out the table in a forward manner,
updating the costs of the vertices incident to edges that are outgoing from (i1, . . . , ik) in a
stepwise fashion. What if we could determine that a cell (vertex) (i1, . . . , ik) will not be part
of the optimal alignment path? In that case, we would not add the neighbors of (i1, . . . , ik)
to the queue, essentially pruning the search space.

The Carrillo-Lipman algorithm implements such a pruning step. For ease of exposition,
we consider the case with k = 3 input strings v1,v2,v3 that each have the same length n.
Let

• D(i, j, k) be the minimum SP-cost of aligning prefixes v1[1..i],v2[1..j],v3[1..k],

• dp,q(i, j) be the cost of the induced pairwise alignment of vp[1..i],vq[1..j] (where 1 ≤
p < q ≤ 3) of the optimal multiple alignment of v1[1..i],v2[1..j],v3[1..k],

• Dp,q(i, j) be the minimum cost of aligning vp[1..i],vq[1..j] (where 1 ≤ p < q ≤ 3).

2

Clearly, dp,q(i, j) ≥ Dp,q(i, j) as the induced pairwise alignment of an optimal multiple align-
ment are not necessarily optimal themselves. Moreover, by definition of the SP-score, we
have D(i, j, k) = d1,2(i, j) + d1,3(i, k) + d2,3(j, k). Thus, we have

D(i, j, k) = d1,2(i, j) + d1,3(i, k) + d2,3(j, k) ≥ D1,2(i, j) +D1,3(i, k) +D2,3(j, k). (2)

Let’s consider suffixes v1[i..n],v2[j..n],v3[k..n]. We define

• D+(i, j, k) be the minimum SP-cost of aligning suffixes v1[i..n],v2[j..n],v3[k..n],

• d+p,q(i, j) be the cost of the induced pairwise alignment of vp[i..n],vq[j..n] (where 1 ≤
p < q ≤ 3) of the optimal multiple alignment of v1[i..n],v2[j..n],v3[k..n],

• D+
p,q(i, j) be the minimum cost of aligning vp[i..n],vq[j..n] (where 1 ≤ p < q ≤ 3).

Again, we have d+p,q(i, j) ≥ D+
p,q(i, j), D

+(i, j, k) = d+1,2(i, j) + d+1,3(i, k) + d+2,3(j, k) and thus

D+(i, j, k) = d+1,2(i, j) + d+1,3(i, k) + d+2,3(j, k) ≥ D+
1,2(i, j) +D+

1,3(i, k) +D+
2,3(j, k). (3)

The cost of the optimal alignment passing through (i, j, k) is D(i, j, k) + D+(i, j, k) (this
should remind you of the Hirschberg algorithm!). Combining these two previous results, we
get

D(i, j, k) +D+(i, j, k) ≥ D(i, j, k) +D+
1,2(i, j) +D+

1,3(i, k) +D+
2,3(j, k). (4)

Now, suppose we have alignment of v1,v2,v3 with cost z. Note that we do not know
anything about the quality of this alignment. If

D(i, j, k) +D+
1,2(i, j) +D+

1,3(i, k) +D+
2,3(j, k) > z

then we know that
D(i, j, k) +D+(i, j, k) > z.

In other words, if we force the alignment to go through (i, j, k) we will get a score that is
worse than z. Hence, the optimal alignment will not pass through (i, j, k). The cool thing
about this procedure is that D+

1,2(i, j)+D+
1,3(i, k)+D+

2,3(j, k) can be computed in O(n2) time.
How do we go about finding an alignment with cost z? We have to resort to heuristics.

3

