
CS 466
Introduction to Bioinformatics

Lecture 7

Mohammed El-Kebir
September 15, 2021

Outline
• Multiple sequence alignment
• Carrillo-Lipman algorithm
• Progressive alignment

Reading:
• Jones and Pevzner. Chapter 6.10
• Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and

Sequences” by Dan Gusfield
• Lecture notes

2

Multiple Sequence Alignment Problem w/ SP-Score

3

A multiple sequence alignment ℳ between 𝑘 strings 𝐯!, … , 𝐯" is a
𝑘 × 𝑞 matrix, where 𝑞 = max{ |𝐯# ∶ 𝑖 ∈ 𝑘 }, … , ∑#$!" |𝐯#|} such
that the 𝑖-th row contains the characters of 𝐯# in order with spaces
‘-’ interspersed and no column contains 𝑘 spaces

MSA-SP problem: Given strings 𝐯!, … , 𝐯" and scoring function
δ ∶ Σ ∪ − × Σ ∪ − → ℝ find multiple sequence alignment
ℳ∗ with maximum value of SP-score(ℳ∗) = ∑#$!" ∑&$#'!" 𝑆(𝐯# , 𝐯&)

where 𝑆(𝐯# , 𝐯&) is the score of the
induced pairwise alignment of (𝐯# , 𝐯&) in ℳ∗ using δ

Sum-of-Pairs (SP) Score

4

A T - G C G -

A - C G T - C

A T C A C - A

𝐯!
𝐯"
𝐯#

A T - G C G -

A - C G T - C

A T - G C G -

A T C A C - A

A - C G T C

A T C A C A

𝐯!
𝐯"

𝐯! 𝐯"
𝐯#𝐯#

SP-score(ℳ) = ∑#$!" ∑&$#'!" 𝑆(𝐯# , 𝐯&)

𝑆(𝐯# , 𝐯&) is score of induced
pairwise alignment of

sequences (𝐯# , 𝐯&)

Multiple sequence alignment ℳ

Inverse Problem: From Pairwise to Multiple Alignment

5

A C G C T G G - C

A C G C - - G A G

A C - G C T G G - C

G C C G C A - G A G

A C - G C - G A G

G C C G C A G A G

𝐯!
𝐯"

𝐯! 𝐯"
𝐯#𝐯#

Question: Can we construct a multiple alignment that induces the
above three pairwise alignments?

Inverse Problem: From Pairwise to Multiple Alignment

6

Question: Can we construct a multiple alignment that induces the
above three pairwise alignments?

A A A T T T - - -

- - - T T T G G G

- - - A A A T T T

G G G A A A - - -

T T T G G G - - -

- - - G G G A A A

𝐯!
𝐯"

𝐯! 𝐯"
𝐯#𝐯#

Compatibility

7

Compatible: Pairwise alignments
can be combined into multiple
alignment

Incompatible: Pairwise alignments
cannot be combined into multiple
alignment

Compatibility

8

Compatible: Pairwise alignments
can be combined into multiple
alignment

Incompatible: Pairwise alignments
cannot be combined into multiple
alignment

From Compatible Pairwise to Multiple Alignment

9

Optimal multiple alignment (Sub)optimal multiple alignment

Pairwise alignments between all
pairs of sequences, but they are

not necessarily optimal

Good (or optimal) compatible
pairwise alignments between all

sequences

Easy Challenging

Outline
• Multiple sequence alignment
• Carrillo-Lipman algorithm
• Progressive alignment

Reading:
• Jones and Pevzner. Chapter 6.10
• Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and

Sequences” by Dan Gusfield
• Lecture notes

10

Multiple Sequence Alignment Problem w/ SP-Score

11

Weighted SP-Edit Distance problem: Given strings 𝐯!, … , 𝐯" and and
scoring function δ ∶ Σ ∪ − × Σ ∪ − → ℝ, find multiple

sequence alignment ℳ∗ with minimum value of
SP-score(ℳ∗) = ∑#$!" ∑&$#'!" 𝑆(𝐯# , 𝐯&) where 𝑆(𝐯# , 𝐯&) is the score

of the induced pairwise alignment of (𝐯# , 𝐯&) in ℳ∗ using δ

MSA-SP problem: Given strings 𝐯!, … , 𝐯" and scoring function
δ ∶ Σ ∪ − × Σ ∪ − → ℝ, find multiple sequence alignment
ℳ∗ with maximum value of SP-score(ℳ∗) = ∑#$!" ∑&$#'!" 𝑆(𝐯# , 𝐯&)

where 𝑆(𝐯# , 𝐯&) is the score of the
induced pairwise alignment of (𝐯# , 𝐯&) in ℳ∗ using δ

Recall: Banded Alignment

12

3. A�ne Gap Costs (More biologically realistic): We can extend this problem further by
introducing an a�ne gap penalty function

� + (n� 1)✏

where � is the gap open penalty, n is the gap length and ✏ is the gap extension penalty.
A gap extension penalty which is smaller than a gap open penalty more directly models
the underlying biology, as a few longer gaps (corresponding to, say, double stranded
DNA breaks and repair) are more likely than several small gaps. Gotoh’s algorithm
allows local alignment with a�ne gap costs in quadratic time.

4. Linear Space: For large pairs of sequences, the O(MN) memory taken up by the table
of scores can be substantial. Hirschberg’s algorithm is a way of computing only the
necessary entries of F which allows O(N) memory usage (hence linear space) at the
expense of roughly doubly the running time.

5. Banded Alignment : Banded alignment is best illustrated with a figure. It reduces the
time complexity of alignment to roughly linear time by being semi-greedy, as it disallows
the possibility of a high scoring alignment that wanders significantly o↵ the diagonal
(corresponding to a big gap in either sequence).

x1

x2

x3

.

.

.

.

.

.

xM

y1 y2 y3 yN

Constrain traceback to band of DP matrix (penalize big gaps)

Figure 7 | By constraining the traceback to a band of the matrix, we can make the running time
roughly linear (if N = M , then the running time would be O(Nk(N)), where k(N) is the char-
acteristic band width. Biologically, this corresponds to disallowing long gaps. Computationally,
cells which are outside of the banded region are not considered when taking the max; this means
setting F (i, j) = �1 for |i� j| > k(N).

10

Figure source: http://jinome.stanford.edu/stat366/pdfs/stat366_win0607_lecture04.pdf

Constraint path to band of width 𝑘
around diagonal

Running time: O(𝑛𝑘)

Alignment is a path from source
(0, 0) to target (𝑚, 𝑛) in edit graph

Question: Alternative ways of
constraining search space?

http://jinome.stanford.edu/stat366/pdfs/stat366_win0607_lecture04.pdf

Forward Dynamic Programming

13

Banded alignment: constraint path to
polyhedron around diagonal

Alternatively: Stop computing when
remaining alignment will be suboptimal

Forward Dynamic Programming

14

Banded alignment: constraint path to
polyhedron around diagonal

Forward dynamic programming – think of Dijkstra’s algorithm:
• Queue of unvisited vertices
• Maintain 𝑝 𝑖, 𝑗, 𝑘 shortest distance yet found from

0,0,0 to (𝑖, 𝑗, 𝑘).
• For each directed edge (𝑖, 𝑗, 𝑘) to (𝑖!, 𝑗′, 𝑘′) with cost 𝑤,

set 𝑝 𝑖′, 𝑗′, 𝑘′ = min{𝑝 𝑖!, 𝑗!, 𝑘! , 𝑝 𝑖, 𝑗, 𝑘 + 𝑤}

Alternatively: Stop computing when
remaining alignment will be suboptimal

Forward Dynamic Programming

15

Banded alignment: constraint path to
polyhedron around diagonal

Forward dynamic programming – think of Dijkstra’s algorithm:
• Queue of unvisited vertices
• Maintain 𝑝 𝑖, 𝑗, 𝑘 shortest distance yet found from

0,0,0 to (𝑖, 𝑗, 𝑘).
• For each directed edge (𝑖, 𝑗, 𝑘) to (𝑖!, 𝑗′, 𝑘′) with cost 𝑤,

set 𝑝 𝑖′, 𝑗′, 𝑘′ = min{𝑝 𝑖!, 𝑗!, 𝑘! , 𝑝 𝑖, 𝑗, 𝑘 + 𝑤}

Alternatively: Stop computing when
remaining alignment will be suboptimal

Question: Can we remove vertices from consideration based on alignment score of prefix?

Alignment Projection and SP-score

16

Sequences 𝐯!, 𝐯(, 𝐯) each of length 𝑛

• 𝐷(𝑖, 𝑗, 𝑘) is min SP-cost of aligning 𝐯! 1. . 𝑖 , 𝐯(1. . 𝑗 , 𝐯) 1. . 𝑘
• 𝑑*,,(𝑖, 𝑗) is cost of induced alignment of 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗
• 𝐷*,,(𝑖, 𝑗) is min cost of aligning 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗

Alignment Projection and SP-score

17

Sequences 𝐯!, 𝐯(, 𝐯) each of length 𝑛

• 𝐷(𝑖, 𝑗, 𝑘) is min SP-cost of aligning 𝐯! 1. . 𝑖 , 𝐯(1. . 𝑗 , 𝐯) 1. . 𝑘
• 𝑑*,,(𝑖, 𝑗) is cost of induced alignment of 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗
• 𝐷*,,(𝑖, 𝑗) is min cost of aligning 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗

𝑑*,,(𝑖, 𝑗) ≥ 𝐷*,,(𝑖, 𝑗)

Alignment Projection and SP-score

18

Sequences 𝐯!, 𝐯(, 𝐯) each of length 𝑛

𝑑*,,(𝑖, 𝑗) ≥ 𝐷*,,(𝑖, 𝑗)

𝐷 𝑖, 𝑗, 𝑘 = 𝑑!,(𝑖, 𝑗 + 𝑑!,) 𝑖, 𝑘 + 𝑑(,) 𝑗, 𝑘
≥ 𝐷!,(𝑖, 𝑗 + 𝐷!,) 𝑖, 𝑘 + 𝐷(,)(𝑗, 𝑘)

• 𝐷(𝑖, 𝑗, 𝑘) is min SP-cost of aligning 𝐯! 1. . 𝑖 , 𝐯(1. . 𝑗 , 𝐯) 1. . 𝑘
• 𝑑*,,(𝑖, 𝑗) is cost of induced alignment of 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗
• 𝐷*,,(𝑖, 𝑗) is min cost of aligning 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗

Carrillo-Lipman Method

19

• 𝐷'(𝑖, 𝑗, 𝑘) is min SP-cost of alignment of suffix
𝐯! 𝑖. . 𝑛 , 𝐯(𝑗. . 𝑛 , 𝐯) 𝑘. . 𝑛

• 𝑑*,,' (𝑖, 𝑗) is cost of induced alignment of suffix 𝐯* 𝑖. . 𝑛 , 𝐯, 𝑗. . 𝑛
• 𝐷*,,' (𝑖, 𝑗) is min cost of alignment of suffix 𝐯* 𝑖. . 𝑛 , 𝐯, 𝑗. . 𝑛

𝑑*,,' (𝑖, 𝑗) ≥ 𝐷*,,' (𝑖, 𝑗)

𝐷' 𝑖, 𝑗, 𝑘 = 𝑑!,(' 𝑖, 𝑗 + 𝑑!,)' 𝑖, 𝑘 + 𝑑(,)' 𝑗, 𝑘
≥ 𝐷!,(' 𝑖, 𝑗 + 𝐷!,)' 𝑖, 𝑘 + 𝐷(,)' (𝑗, 𝑘)

Carrillo-Lipman Method

20

𝐷" 𝑖, 𝑗, 𝑘 = 𝑑#,%" 𝑖, 𝑗 + 𝑑#,&" 𝑖, 𝑘 + 𝑑%,&" 𝑗, 𝑘 ≥ 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

𝐷 𝑖, 𝑗, 𝑘 + 𝐷" 𝑖, 𝑗, 𝑘 ≥ 𝐷 𝑖, 𝑗, 𝑘 + 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Carrillo-Lipman Method

21

𝐷 𝑖, 𝑗, 𝑘 + 𝐷" 𝑖, 𝑗, 𝑘 ≥ 𝐷 𝑖, 𝑗, 𝑘 + 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Question: What if we have
an alignment with cost 𝑧?

𝐷" 𝑖, 𝑗, 𝑘 = 𝑑#,%" 𝑖, 𝑗 + 𝑑#,&" 𝑖, 𝑘 + 𝑑%,&" 𝑗, 𝑘 ≥ 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Carrillo-Lipman Method

22

𝐷 𝑖, 𝑗, 𝑘 + 𝐷" 𝑖, 𝑗, 𝑘 ≥ 𝐷 𝑖, 𝑗, 𝑘 + 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Question: What if we have
an alignment with cost 𝑧?

If 𝑧 < 𝐷 𝑖, 𝑗, 𝑘 + 𝐷!,(' 𝑖, 𝑗 + 𝐷!,)' 𝑖, 𝑘 + 𝐷(,)' (𝑗, 𝑘)
then 𝑖, 𝑗, 𝑘 not on optimal path => Prune!

𝐷" 𝑖, 𝑗, 𝑘 = 𝑑#,%" 𝑖, 𝑗 + 𝑑#,&" 𝑖, 𝑘 + 𝑑%,&" 𝑗, 𝑘 ≥ 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Carrillo-Lipman Method

23

𝐷 𝑖, 𝑗, 𝑘 + 𝐷" 𝑖, 𝑗, 𝑘 ≥ 𝐷 𝑖, 𝑗, 𝑘 + 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Question: What if we have
an alignment with cost 𝑧?

If 𝑧 < 𝐷 𝑖, 𝑗, 𝑘 + 𝐷!,(' 𝑖, 𝑗 + 𝐷!,)' 𝑖, 𝑘 + 𝐷(,)' (𝑗, 𝑘)
then 𝑖, 𝑗, 𝑘 not on optimal path => Prune!

Question: How to find this alignment?

𝐷" 𝑖, 𝑗, 𝑘 = 𝑑#,%" 𝑖, 𝑗 + 𝑑#,&" 𝑖, 𝑘 + 𝑑%,&" 𝑗, 𝑘 ≥ 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Outline
• Multiple sequence alignment
• Carrillo-Lipman algorithm
• Progressive alignment

Reading:
• Jones and Pevzner. Chapter 6.10
• Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and

Sequences” by Dan Gusfield
• Lecture notes

24

Heuristic: Iterative/Progressive Alignment

25

Heuristic Approach: Merge Pairwise Alignments

26

Question:
Can we align two

alignments?

Need a way to summarize
an alignment and score

merged alignments

Profile Representation of Multiple Alignment

27

A profile 𝑃 = [𝑝#,&] is a Σ + 1 × 𝑙 matrix,
where 𝑝#,& is the frequency of 𝑖-th letter in 𝑗-th position of alignment

Profile Representation of Multiple Alignment

28

We know how to align
sequence against sequence

Question: Can we align
sequence against profile?

Question: Can we align profile
against profile?

Aligning String to Profile

29

Given: Sequences 𝐯 = 𝑣!, … , 𝑣- and profile 𝑃 with 𝑛 columns

A profile 𝑃 = [𝑝#,&] is a (Σ + 1) × 𝑛 matrix,
where 𝑝#,& is the frequency of 𝑖-th letter in 𝑗-th position of alignment

• 𝑠[𝑖, 𝑗] is optimal alignment of 𝑣!, … , 𝑣# and first 𝑗 columns of 𝑃
• 𝛿(𝑥, 𝑦) is score for aligning characters 𝑥 and 𝑦
• 𝜏(𝑥, 𝑗) is score for aligning character 𝑥 and column 𝑗 of 𝑃

Aligning String to Profile

30

⌧(x, j) =
X

y2⌃[{�}

py,j · �(x, y)

s[i, j] = max

8
>>><

>>>:

0, if i = 0 and j = 0,

s[i� 1, j] + �(vi,�), if i > 0,

s[i, j � 1] + ⌧(�, j), if j > 0,

s[i� 1, j � 1] + ⌧(vi, j), if i > 0 and j > 0.

• 𝑠[𝑖, 𝑗] is optimal alignment of 𝑣!, … , 𝑣# and first 𝑗 columns of 𝑃
• 𝛿(𝑥, 𝑦) is score for aligning characters 𝑥 and 𝑦
• 𝜏(𝑥, 𝑗) is score for aligning character 𝑥 and column 𝑗 of 𝑃

Insert space in profile

Insert space in string

Progressive Multiple Alignment: Greedy Algorithm

31

Choose most similar pair among k input strings, combine into a
profile. This reduces the original problem to alignment of k-1
sequences to a profile. Repeat.

Example

32

Score of +1 for matches, -1 otherwise.

Example

33

Score of +1 for matches, -1 otherwise.

Question: Any theoretical
guarantees on optimality? No guarantees!

Outline
• Multiple sequence alignment
• Carrillo-Lipman algorithm
• Progressive alignment

Reading:
• Jones and Pevzner. Chapter 6.10
• Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and

Sequences” by Dan Gusfield
• Lecture notes

34

