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Outline
• Multiple sequence alignment
• Carrillo-Lipman algorithm
• Progressive alignment

Reading:
• Jones and Pevzner. Chapter 6.10
• Material based on Chapter 14.6 in book “Algorithms on Strings, Trees and 

Sequences” by Dan Gusfield
• Lecture notes
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Multiple Sequence Alignment Problem w/ SP-Score
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A multiple sequence alignment ℳ between 𝑘 strings 𝐯!, … , 𝐯" is a 
𝑘 × 𝑞 matrix, where 𝑞 = max{ |𝐯# ∶ 𝑖 ∈ 𝑘 }, … , ∑#$!" |𝐯#|} such 
that the 𝑖-th row contains the characters of 𝐯# in order with spaces 
‘-’ interspersed and no column contains 𝑘 spaces 

MSA-SP problem: Given strings 𝐯!, … , 𝐯" and scoring function 
δ ∶ Σ ∪ − × Σ ∪ − → ℝ find multiple sequence alignment 
ℳ∗ with maximum value of SP-score(ℳ∗) = ∑#$!" ∑&$#'!" 𝑆(𝐯# , 𝐯&)

where 𝑆(𝐯# , 𝐯&) is the score of the 
induced pairwise alignment of (𝐯# , 𝐯&) in ℳ∗ using δ



Sum-of-Pairs (SP) Score
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A T - G C G -

A - C G T - C

A T C A C - A

𝐯!
𝐯"
𝐯#

A T - G C G -

A - C G T - C

A T - G C G -

A T C A C - A

A - C G T C
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𝐯! 𝐯"
𝐯#𝐯#

SP-score(ℳ) = ∑#$!" ∑&$#'!" 𝑆(𝐯# , 𝐯&)

𝑆(𝐯# , 𝐯&) is score of induced  
pairwise alignment of 

sequences (𝐯# , 𝐯&)

Multiple sequence alignment ℳ



Inverse Problem: From Pairwise to Multiple Alignment
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A C G C T G G - C

A C G C - - G A G

A C - G C T G G - C

G C C G C A - G A G

A C - G C - G A G

G C C G C A G A G

𝐯!
𝐯"

𝐯! 𝐯"
𝐯#𝐯#

Question: Can we construct a multiple alignment that induces the 
above three pairwise alignments?



Inverse Problem: From Pairwise to Multiple Alignment
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Question: Can we construct a multiple alignment that induces the 
above three pairwise alignments?

A A A T T T - - -

- - - T T T G G G

- - - A A A T T T

G G G A A A - - -

T T T G G G - - -

- - - G G G A A A

𝐯!
𝐯"

𝐯! 𝐯"
𝐯#𝐯#



Compatibility
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Compatible: Pairwise alignments 
can be combined into multiple 
alignment

Incompatible: Pairwise alignments 
cannot be combined into multiple 
alignment



Compatibility
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Compatible: Pairwise alignments 
can be combined into multiple 
alignment

Incompatible: Pairwise alignments 
cannot be combined into multiple 
alignment



From Compatible Pairwise to Multiple Alignment
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Optimal multiple alignment (Sub)optimal multiple alignment

Pairwise alignments between all
pairs of sequences, but they are 

not necessarily optimal

Good (or optimal) compatible
pairwise alignments between all 

sequences

Easy Challenging
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Multiple Sequence Alignment Problem w/ SP-Score
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Weighted SP-Edit Distance problem: Given strings 𝐯!, … , 𝐯" and and 
scoring function δ ∶ Σ ∪ − × Σ ∪ − → ℝ, find multiple 

sequence alignment ℳ∗ with minimum value of 
SP-score(ℳ∗) = ∑#$!" ∑&$#'!" 𝑆(𝐯# , 𝐯&) where 𝑆(𝐯# , 𝐯&) is the score 

of the induced pairwise alignment of (𝐯# , 𝐯&) in ℳ∗ using δ

MSA-SP problem: Given strings 𝐯!, … , 𝐯" and scoring function 
δ ∶ Σ ∪ − × Σ ∪ − → ℝ, find multiple sequence alignment 
ℳ∗ with maximum value of SP-score(ℳ∗) = ∑#$!" ∑&$#'!" 𝑆(𝐯# , 𝐯&)

where 𝑆(𝐯# , 𝐯&) is the score of the 
induced pairwise alignment of (𝐯# , 𝐯&) in ℳ∗ using δ



Recall: Banded Alignment
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3. A�ne Gap Costs (More biologically realistic): We can extend this problem further by
introducing an a�ne gap penalty function

� + (n� 1)✏

where � is the gap open penalty, n is the gap length and ✏ is the gap extension penalty.
A gap extension penalty which is smaller than a gap open penalty more directly models
the underlying biology, as a few longer gaps (corresponding to, say, double stranded
DNA breaks and repair) are more likely than several small gaps. Gotoh’s algorithm
allows local alignment with a�ne gap costs in quadratic time.

4. Linear Space: For large pairs of sequences, the O(MN) memory taken up by the table
of scores can be substantial. Hirschberg’s algorithm is a way of computing only the
necessary entries of F which allows O(N) memory usage (hence linear space) at the
expense of roughly doubly the running time.

5. Banded Alignment : Banded alignment is best illustrated with a figure. It reduces the
time complexity of alignment to roughly linear time by being semi-greedy, as it disallows
the possibility of a high scoring alignment that wanders significantly o↵ the diagonal
(corresponding to a big gap in either sequence).

x1 

x2 

x3 

.

.

.

.

.

. 

xM

y1 y2 y3    ...       ...      ...       ...     yN

Constrain traceback to band of DP matrix (penalize big gaps)

Figure 7 | By constraining the traceback to a band of the matrix, we can make the running time
roughly linear (if N = M , then the running time would be O(Nk(N)), where k(N) is the char-
acteristic band width. Biologically, this corresponds to disallowing long gaps. Computationally,
cells which are outside of the banded region are not considered when taking the max; this means
setting F (i, j) = �1 for |i� j| > k(N).
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Figure source: http://jinome.stanford.edu/stat366/pdfs/stat366_win0607_lecture04.pdf

Constraint path to band of width 𝑘
around diagonal 

Running time: O(𝑛𝑘)

Alignment is a path from source 
(0, 0) to target (𝑚, 𝑛) in edit graph

Question: Alternative ways of 
constraining search space?

http://jinome.stanford.edu/stat366/pdfs/stat366_win0607_lecture04.pdf


Forward Dynamic Programming
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Banded alignment: constraint path to 
polyhedron around diagonal 

Alternatively: Stop computing when 
remaining alignment will be suboptimal



Forward Dynamic Programming
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Banded alignment: constraint path to 
polyhedron around diagonal 

Forward dynamic programming – think of Dijkstra’s algorithm:
• Queue of unvisited vertices 
• Maintain 𝑝 𝑖, 𝑗, 𝑘 shortest distance yet found from 

0,0,0 to (𝑖, 𝑗, 𝑘). 
• For each directed edge (𝑖, 𝑗, 𝑘) to (𝑖!, 𝑗′, 𝑘′) with cost 𝑤, 

set 𝑝 𝑖′, 𝑗′, 𝑘′ = min{𝑝 𝑖!, 𝑗!, 𝑘! , 𝑝 𝑖, 𝑗, 𝑘 + 𝑤}

Alternatively: Stop computing when 
remaining alignment will be suboptimal



Forward Dynamic Programming
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Banded alignment: constraint path to 
polyhedron around diagonal 

Forward dynamic programming – think of Dijkstra’s algorithm:
• Queue of unvisited vertices 
• Maintain 𝑝 𝑖, 𝑗, 𝑘 shortest distance yet found from 

0,0,0 to (𝑖, 𝑗, 𝑘). 
• For each directed edge (𝑖, 𝑗, 𝑘) to (𝑖!, 𝑗′, 𝑘′) with cost 𝑤, 

set 𝑝 𝑖′, 𝑗′, 𝑘′ = min{𝑝 𝑖!, 𝑗!, 𝑘! , 𝑝 𝑖, 𝑗, 𝑘 + 𝑤}

Alternatively: Stop computing when 
remaining alignment will be suboptimal

Question: Can we remove vertices from consideration based on alignment score of prefix?



Alignment Projection and SP-score
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Sequences 𝐯!, 𝐯(, 𝐯) each of length 𝑛

• 𝐷(𝑖, 𝑗, 𝑘) is min SP-cost of aligning 𝐯! 1. . 𝑖 , 𝐯( 1. . 𝑗 , 𝐯) 1. . 𝑘
• 𝑑*,,(𝑖, 𝑗) is cost of induced alignment of 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗
• 𝐷*,,(𝑖, 𝑗) is min cost of aligning 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗



Alignment Projection and SP-score
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Sequences 𝐯!, 𝐯(, 𝐯) each of length 𝑛

• 𝐷(𝑖, 𝑗, 𝑘) is min SP-cost of aligning 𝐯! 1. . 𝑖 , 𝐯( 1. . 𝑗 , 𝐯) 1. . 𝑘
• 𝑑*,,(𝑖, 𝑗) is cost of induced alignment of 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗
• 𝐷*,,(𝑖, 𝑗) is min cost of aligning 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗

𝑑*,,(𝑖, 𝑗) ≥ 𝐷*,,(𝑖, 𝑗)



Alignment Projection and SP-score
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Sequences 𝐯!, 𝐯(, 𝐯) each of length 𝑛

𝑑*,,(𝑖, 𝑗) ≥ 𝐷*,,(𝑖, 𝑗)

𝐷 𝑖, 𝑗, 𝑘 = 𝑑!,( 𝑖, 𝑗 + 𝑑!,) 𝑖, 𝑘 + 𝑑(,) 𝑗, 𝑘
≥ 𝐷!,( 𝑖, 𝑗 + 𝐷!,) 𝑖, 𝑘 + 𝐷(,)(𝑗, 𝑘)

• 𝐷(𝑖, 𝑗, 𝑘) is min SP-cost of aligning 𝐯! 1. . 𝑖 , 𝐯( 1. . 𝑗 , 𝐯) 1. . 𝑘
• 𝑑*,,(𝑖, 𝑗) is cost of induced alignment of 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗
• 𝐷*,,(𝑖, 𝑗) is min cost of aligning 𝐯* 1. . 𝑖 , 𝐯, 1. . 𝑗



Carrillo-Lipman Method
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• 𝐷'(𝑖, 𝑗, 𝑘) is min SP-cost of alignment of suffix
𝐯! 𝑖. . 𝑛 , 𝐯( 𝑗. . 𝑛 , 𝐯) 𝑘. . 𝑛

• 𝑑*,,' (𝑖, 𝑗) is cost of induced alignment of suffix 𝐯* 𝑖. . 𝑛 , 𝐯, 𝑗. . 𝑛
• 𝐷*,,' (𝑖, 𝑗) is min cost of alignment of suffix 𝐯* 𝑖. . 𝑛 , 𝐯, 𝑗. . 𝑛

𝑑*,,' (𝑖, 𝑗) ≥ 𝐷*,,' (𝑖, 𝑗)

𝐷' 𝑖, 𝑗, 𝑘 = 𝑑!,(' 𝑖, 𝑗 + 𝑑!,)' 𝑖, 𝑘 + 𝑑(,)' 𝑗, 𝑘
≥ 𝐷!,(' 𝑖, 𝑗 + 𝐷!,)' 𝑖, 𝑘 + 𝐷(,)' (𝑗, 𝑘)



Carrillo-Lipman Method
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𝐷" 𝑖, 𝑗, 𝑘 = 𝑑#,%" 𝑖, 𝑗 + 𝑑#,&" 𝑖, 𝑘 + 𝑑%,&" 𝑗, 𝑘 ≥ 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

𝐷 𝑖, 𝑗, 𝑘 + 𝐷" 𝑖, 𝑗, 𝑘 ≥ 𝐷 𝑖, 𝑗, 𝑘 + 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)



Carrillo-Lipman Method

21

𝐷 𝑖, 𝑗, 𝑘 + 𝐷" 𝑖, 𝑗, 𝑘 ≥ 𝐷 𝑖, 𝑗, 𝑘 + 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Question: What if we have 
an alignment with cost 𝑧?

𝐷" 𝑖, 𝑗, 𝑘 = 𝑑#,%" 𝑖, 𝑗 + 𝑑#,&" 𝑖, 𝑘 + 𝑑%,&" 𝑗, 𝑘 ≥ 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)



Carrillo-Lipman Method
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𝐷 𝑖, 𝑗, 𝑘 + 𝐷" 𝑖, 𝑗, 𝑘 ≥ 𝐷 𝑖, 𝑗, 𝑘 + 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Question: What if we have 
an alignment with cost 𝑧?

If 𝑧 < 𝐷 𝑖, 𝑗, 𝑘 + 𝐷!,(' 𝑖, 𝑗 + 𝐷!,)' 𝑖, 𝑘 + 𝐷(,)' (𝑗, 𝑘)
then 𝑖, 𝑗, 𝑘 not on optimal path => Prune!

𝐷" 𝑖, 𝑗, 𝑘 = 𝑑#,%" 𝑖, 𝑗 + 𝑑#,&" 𝑖, 𝑘 + 𝑑%,&" 𝑗, 𝑘 ≥ 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)



Carrillo-Lipman Method
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𝐷 𝑖, 𝑗, 𝑘 + 𝐷" 𝑖, 𝑗, 𝑘 ≥ 𝐷 𝑖, 𝑗, 𝑘 + 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)

Question: What if we have 
an alignment with cost 𝑧?

If 𝑧 < 𝐷 𝑖, 𝑗, 𝑘 + 𝐷!,(' 𝑖, 𝑗 + 𝐷!,)' 𝑖, 𝑘 + 𝐷(,)' (𝑗, 𝑘)
then 𝑖, 𝑗, 𝑘 not on optimal path => Prune!

Question: How to find this alignment?

𝐷" 𝑖, 𝑗, 𝑘 = 𝑑#,%" 𝑖, 𝑗 + 𝑑#,&" 𝑖, 𝑘 + 𝑑%,&" 𝑗, 𝑘 ≥ 𝐷#,%" 𝑖, 𝑗 + 𝐷#,&" 𝑖, 𝑘 + 𝐷%,&" (𝑗, 𝑘)
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Heuristic: Iterative/Progressive Alignment
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Heuristic Approach: Merge Pairwise Alignments
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Question: 
Can we align two 

alignments?

Need a way to summarize 
an alignment and score 

merged alignments



Profile Representation of Multiple Alignment
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A profile 𝑃 = [𝑝#,&] is a Σ + 1 × 𝑙 matrix, 
where 𝑝#,& is the frequency of 𝑖-th letter in 𝑗-th position of alignment



Profile Representation of Multiple Alignment

28

We know how to align 
sequence against sequence

Question: Can we align 
sequence against profile?

Question: Can we align profile 
against profile?



Aligning String to Profile
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Given:  Sequences 𝐯 = 𝑣!, … , 𝑣- and profile 𝑃 with 𝑛 columns

A profile 𝑃 = [𝑝#,&] is a ( Σ + 1) × 𝑛 matrix, 
where 𝑝#,& is the frequency of 𝑖-th letter in 𝑗-th position of alignment

• 𝑠[𝑖, 𝑗] is optimal alignment of 𝑣!, … , 𝑣# and first 𝑗 columns of 𝑃
• 𝛿(𝑥, 𝑦) is score for aligning characters 𝑥 and 𝑦
• 𝜏(𝑥, 𝑗) is score for aligning character 𝑥 and column 𝑗 of 𝑃



Aligning String to Profile

30

⌧(x, j) =
X

y2⌃[{�}

py,j · �(x, y)

s[i, j] = max

8
>>><

>>>:

0, if i = 0 and j = 0,

s[i� 1, j] + �(vi,�), if i > 0,

s[i, j � 1] + ⌧(�, j), if j > 0,

s[i� 1, j � 1] + ⌧(vi, j), if i > 0 and j > 0.

• 𝑠[𝑖, 𝑗] is optimal alignment of 𝑣!, … , 𝑣# and first 𝑗 columns of 𝑃
• 𝛿(𝑥, 𝑦) is score for aligning characters 𝑥 and 𝑦
• 𝜏(𝑥, 𝑗) is score for aligning character 𝑥 and column 𝑗 of 𝑃

Insert space in profile

Insert space in string



Progressive Multiple Alignment: Greedy Algorithm
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Choose most similar pair among k input strings, combine into a 
profile. This reduces the original problem to alignment of k-1
sequences to a profile. Repeat.



Example
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Score of +1 for matches, -1 otherwise.



Example
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Score of +1 for matches, -1 otherwise.

Question: Any theoretical 
guarantees on optimality? No guarantees!
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