CS 466 Introduction to Bioinformatics Lecture 21

Mohammed El-Kebir Nov 12, 2021

Outline

Hidden Markov Models: Viterbi algorithm

Reading:

- Jones and Pevzner: Chapters 11.1-11.3
- Lecture notes

Question: Given four nucleotides $\Sigma = \{A, T, C, G\}$, what is the probability of observing dinucleotide CG?

Question: Given four nucleotides $\Sigma = \{A, T, C, G\}$, what is the probability of observing dinucleotide CG?

 ${\it CG}$ is least observed dinucleotide as ${\it C}$ is easily methylated and has tendency to mutate into a ${\it T}$ afterwards

- Methylation is suppressed around promoter regions of genes in a genome. So CG appears at relatively high frequency within these CpG island.
- Finding CpG islands in a genome is an important problem for annotating genes and regulatory regions.

Left: CpG sites at 1/10 nucleotides, constituting a CpG island. The sample is of a gene-promoter, the highlighted ATG consitutes the start codon.

Right: CpG sites present at every 1/100 nucleotides, consituting a more normal example of the genome, or a region of the genome that is commonly methylated.

Source: Wikipedia

- Methylation is suppressed around promoter regions of genes in a genome. So CG appears at relatively high frequency within these CpG island.
- Finding CpG islands in a genome is an important problem for annotating genes and regulatory regions.

Input: DNA sequence $\mathbf{x} = x_1 x_2 \dots x_n$

Output: $\pi : \{1, \ldots, n\} \rightarrow \{\text{yes, no}\}\$

$${f x}=$$
 CGAT TG CGA AAAAAAT AACGA TTATATCG $\pi=$ yes no yes no

Left: CpG sites at 1/10 nucleotides, constituting a CpG island. The sample is of a gene-promoter, the highlighted ATG consitutes the start codon.

Right: CpG sites present at every 1/100 nucleotides, consituting a more normal example of the genome, or a region of the genome that is commonly methylated.

Source: Wikipedia

Question: How do we identify CpG islands?

A Related Problem: Fair Bet Casino

Game is to flip coins, two outcomes:

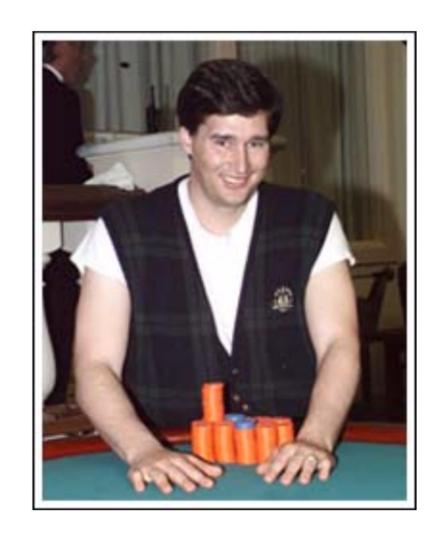
Head or Tail

Two coins: Fair and Biased

$$Pr(H \mid F) = Pr(T \mid F) = 1/2$$

 $Pr(H \mid B) = 3/4, Pr(T \mid B) = 1/4$

 The crooked dealer changes between Fair and Biased coins with probability 10%



CpG Islands and Fair Bet Casino

CG Islands

Input: DNA sequence $\mathbf{x} = x_1 x_2 \dots x_n$ where $x_i \in \{A, T, C, G\}$

Output: $\pi: \{1, \ldots, n\} \rightarrow \{\text{yes}, \text{no}\}$

$${f x}=$$
 CGAT TG CGA AAAAAAT AACGA TTATATCG $\pi=$ yes no yes no

Fair Bet Casino

Input: Coin flips $\mathbf{x} = x_1 x_2 \dots x_n$ where $x_i \in \{H, T\}$

Output: $\pi : \{1, ..., n\} \to \{F, B\}$

$$\mathbf{x}=$$
 $\textcircled{\tiny 0}$ $\textcircled{$

Question: Given x, what is more likely: π or π' ?

Markov Model $\mathcal{M} = (Q, A)$

- Set of states Q
 - Markov property:

$$\Pr(Q_i = q_i \mid Q_1 = q_1, \dots, Q_{i-1} = q_{i-1}) = \Pr(Q_i = q_i \mid Q_{i-1} = q_{i-1})$$

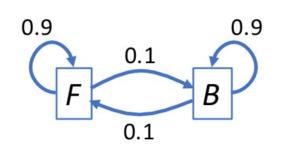
- Transition probabilities $A = [a_{ii}]$ on pairs of states
 - Rows sum to 1

Andrey Markov (source: Wikipedia)

Fair Bet Casino

$$Q = \{F, B\}$$

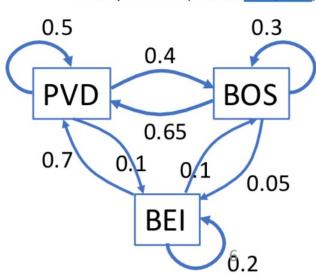
$$A = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}$$



Where is the professor?

 $Q = \{Providence, Boston, Beijing\}$

$$A = \begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.65 & 0.3 & 0.05 \\ 0.7 & 0.1 & 0.2 \end{pmatrix}$$



Hidden Markov Model $\mathcal{M}=(Q,A,\Sigma,E)$

- Set of hidden states Q
 - Markov property
- Transition probabilities $A = [a_{ii}]$ on pairs of states
- Set of *emitted* symbols Σ
- Emission probabilities $E = [e_{ik}]$ on state-symbol pairs

Two decisions:

- What symbol should I emit? [emission probabilities E]
- 2. What state should I move to next? [transition probabilities A]

Fair Bet Casino

$$Q = \{F, B\}$$

$$F = B$$

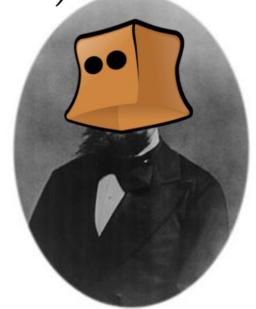
$$A = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix} F$$

$$S = \{H, T\}$$

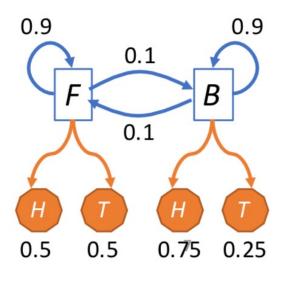
$$\Sigma = \{H, T\}$$

$$H \qquad T$$

$$E = \begin{pmatrix} 0.5 & 0.5 \\ 0.75 & 0.25 \end{pmatrix} \stackrel{\textit{F}}{\textit{B}}$$



Andrey Markov



Three Questions

Question 1:

What is the most probable path π^* that generated observations x?

Question 2:

What is probability of observations x generated by any path π ?

Question 3:

What is the probability of observation x_i generated by state s?

Three Questions

Question 1:

What is the most probable path π^* that generated observations x?

Question 2:

What is probability of observations x generated by any path π ?

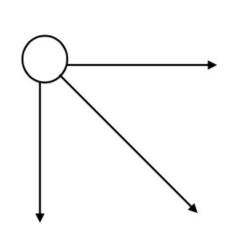
Question 3:

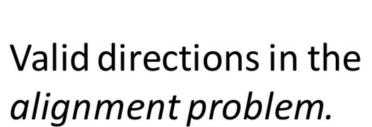
What is the probability of observation x_i generated by state s?

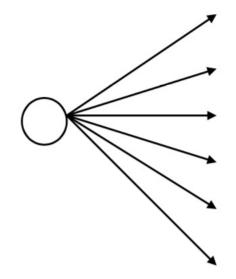
Joint Probability

Recurrence

Alignment vs. Decoding Problem







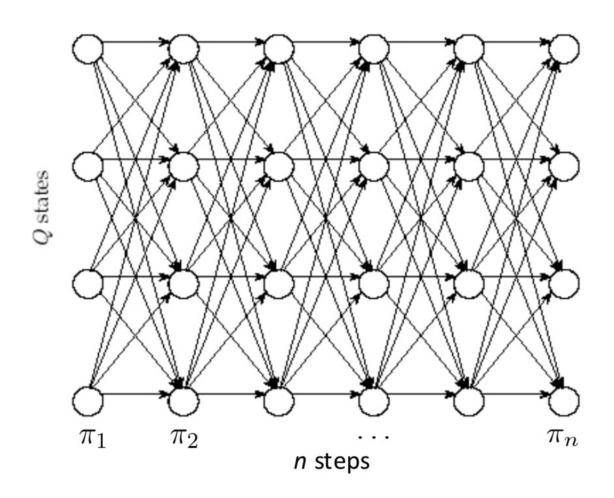
Valid directions in the decoding problem.

Viterbi Algorithm

• Finds path π^* with maximum $\Pr(\mathbf{x}, \pi^*)$

Dynamic Programming algorithm

• Runs in $O(\#edges) = O(n|Q|^2)$



Viterbi Algorithm – Numerical Issues

Value of products can become extremely small, leading to underflow

$$v[s,i] = \begin{cases} a_{0,s} \cdot e_{s,x_1}, & \text{if } i = 1, \\ e_{s,x_i} \max_{t \in Q} \{v[t,i-1]a_{t,s}\}, & \text{if } i > 1. \end{cases}$$

Viterbi Algorithm – Numerical Issues

Value of products can become extremely small, leading to underflow

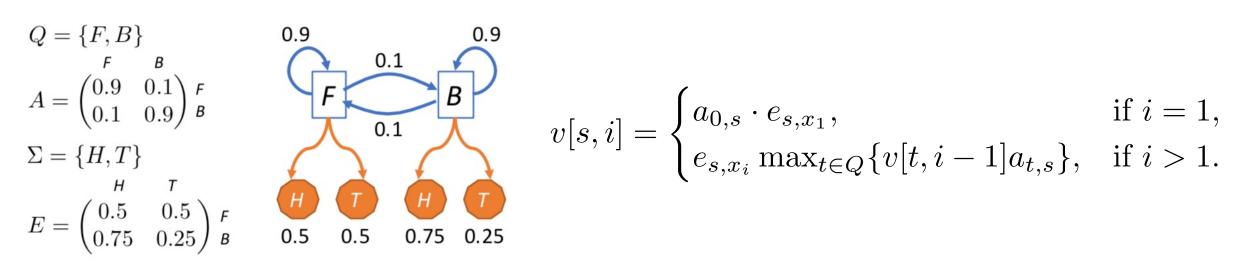
$$v[s,i] = \begin{cases} a_{0,s} \cdot e_{s,x_1}, & \text{if } i = 1, \\ e_{s,x_i} \max_{t \in Q} \{v[t,i-1]a_{t,s}\}, & \text{if } i > 1. \end{cases}$$

Use logarithms!

$$\log(v[s,i]) = \begin{cases} \log(a_{0,s}) + \log(e_{s,x_1}), & \text{if } i = 1, \\ \log(e_{s,x_i}) + \max_{t \in Q} \{\log(v[t,i-1]) + \log(a_{t,s})\}, & \text{if } i > 1. \end{cases}$$

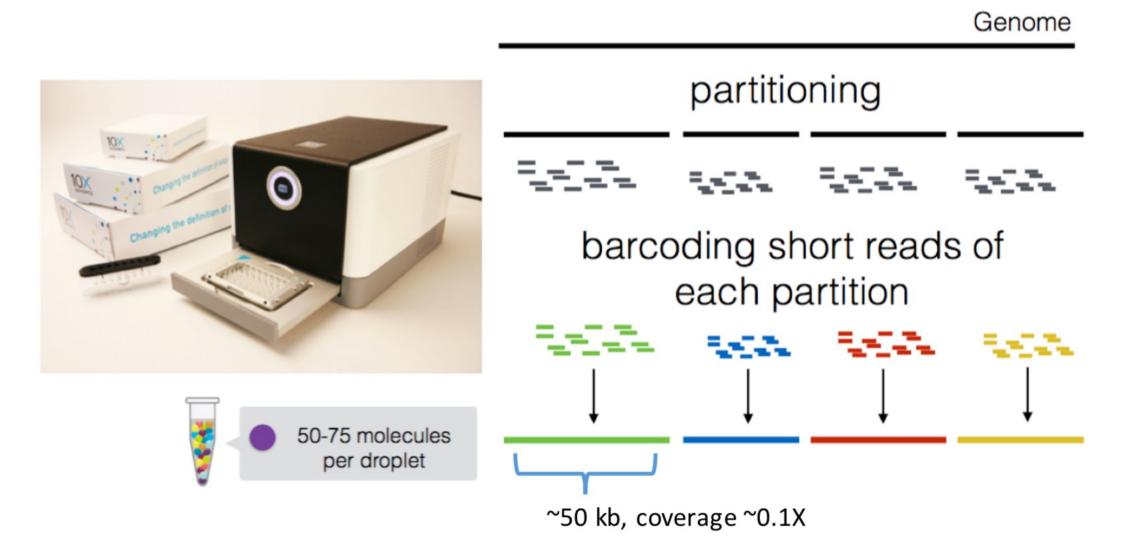
Fair Bet Casino: Example

	0	1 (T)	2 (H)	3 (T)	4 (H)	5 (H)	6 (H)	7 (T)	8 (H)	9 (H)	10 (H)	11 (T)
F												
В												

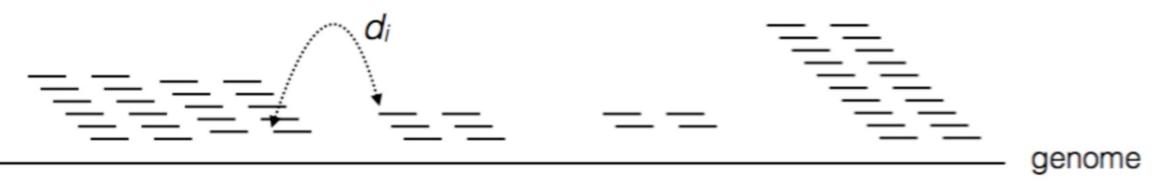


10X Genomics: Synthetic Long Reads

Genome indexing by partitioning and molecular barcoding



 $R_j = \{r_i \mid \forall i, r_i \text{ contains barcode } j\}$: Paired-reads possessing barcode j



Sort linked-reads and calculate distances between them

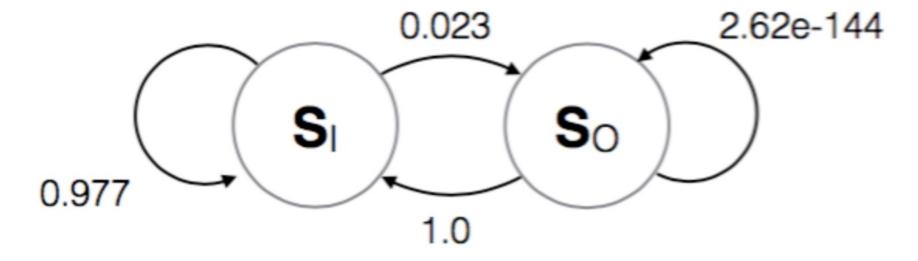
 $D_j = [d_i \mid \forall i, d_i : distance between <math>r_i$ and $r_{i+1}, r_i < r_{i+1}]$

Define distances di as intra- or inter- long molecules

$$\sum_{i=1}^{\infty} [d_1, d_2, d_3, ... d_{500}, d_{501}, d_{502}, ... d_{1001}, d_{1002}, d_{1003}, ...]$$
 $Q_j = [I, I, I, ..., I, O, I, ..., I, O, I, ...]$

I: intra long molecule, O: inter long molecules

HMM



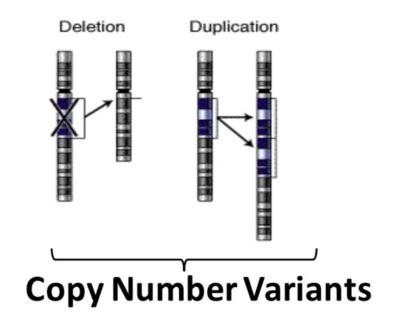
$$\sum_{i} = [d_{1}, d_{2}, d_{3}, \dots d_{500}, d_{501}, d_{502}, \dots d_{1001}, d_{1002}, d_{1003}, \dots]$$

$$Q_{j} = [I, I, I, \dots, I, O, I, \dots, I, O, I, \dots]$$

$$\ell_{j1}$$

I: intra long molecule, O: inter long molecules

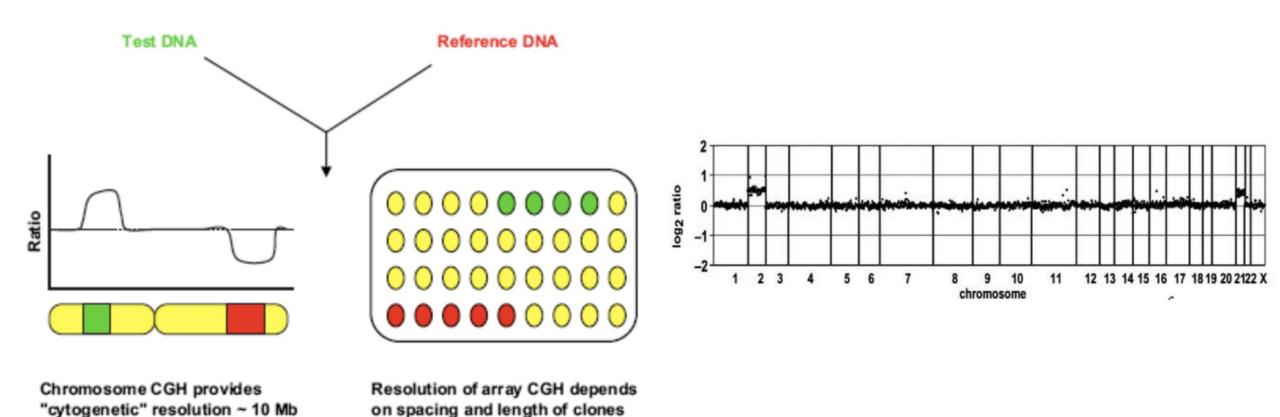
Copy Number Variation



- Different individuals may have different number of copies of segments of genome.
- These variants are associated with various diseases: autism, schizophrenia, cancer

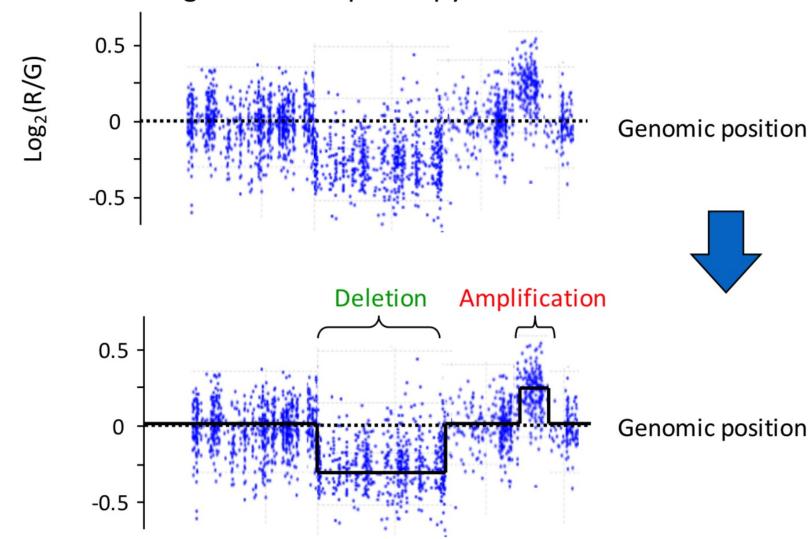
Measuring Copy Number Variants

Comparative Genomic Hybridization (CGH)



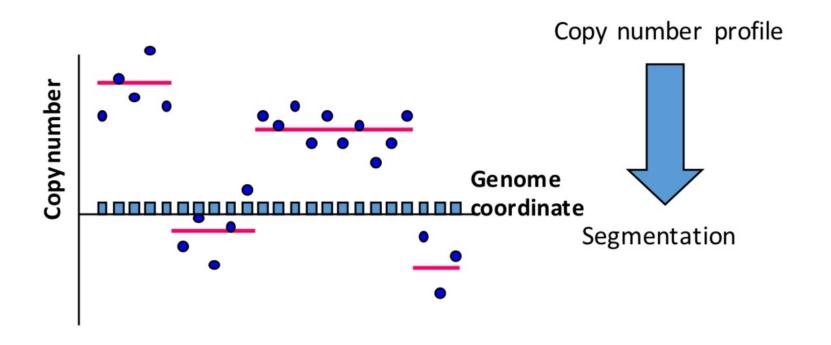
Segmentation and Copy Number Calling

Divide genome into segments of equal copy number



Segmentation and Copy Number Calling

Divide genome into segments of equal copy number



Input: $X_i = \log_2 T_i / R_i$, clone i = 1, ..., N

Output: Assignment $s(i) \in \{S_1, ..., S_K\}$ where S_i represent *copy number states*

Summary

- Markov property Current state depends only on previous state
- Hidden Markov Models: states are not given only emitted symbols
- Viterbi algorithm: Find the most likely sequence of states given a set of observations

Reading:

- Jones and Pevzner: Chapters 11.1-11.3
- Lecture notes