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Maximum Parsimony

Small Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;] and tree T with m leaves, find

assignment of character states to each internal vertex of T
with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;], find a tree T with m leaves labeled

according to A and an assignment of character states to each internal
vertex of T with minimum parsimony score.




Binary Characters

Characters
1 2 3 4 5 Characters only have
Al o | 1 1 0|0 two possible states
5Bl O | 0| 1|10
;)!)- C 1 1 1 1 0 Possible Encoding: Possible Encoding:
0 : not-mutated 0 : no wings
D 1 1 0 1 1 1 : mutated 1: wings




Binary Characters

Characters
1 2 3 4 5 Characters only have
Al o | 1 1 0|0 two possible states
.g B 0 0 1 1 0
;)!)- C 1 1 1 1 0 Possible Encoding: Possible Encoding:
0 : not-mutated 0 : no wings
D 1 1 0 1 1 1 : mutated 1: wings

Question: Given n binary characters,
what is the smallest parsimony score?




Somatic Mutations and Cancer

Clonal theory of cancer (Nowell, 1976)
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100’s — 1000’s of passenger mutations



Somatic Mutations and Cancer

Clonal theory of cancer (Nowell, 1976)
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Progression of Somatic Mutations

Single nucleotide mutation
.. CGTAATTAG ... @ Normal cell

|
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... CGTCATTAG ... \
O - nOrmal }\ 1110101

1 = mutated

0110001 1011011 Tumor cells

Root is the normal, founder cell and leaves are cells in tumor.




Progression of Somatic Mutations

Single nucleotide mutation
.. CGTAATTAG ... /‘ Normal cell
| o
.. CGTCATTAG ... \
0 = normal \ 1110101
1 = mutated 0110001 1011011 Tumor cells

Root is the normal, founder cell and leaves are cells in tumor.

Infinite sites assumption: each locus mutates only once.




Infinite Sites Model = Two-state Perfect Phylogeny

The genome is large

Infinite sites model: multiple mutations
never occur at the same position

[Kimura, 1969]

Mutations are rare

Mutated Loci

*****%
—~ Al000O01 1
» 2 B00011 1
o - Cl001010
SED100000
S E11000 0
1: mutated
0: not

All sites are bi-allelic: mutated or not.




Two-state Perfect Phylogeny

C1
" X
Matrix M € {0,1}"*™ has n taxa and PR
m characters nlo
@ Taxon f has state 1 for character ¢ r3 |1
& f possesses character ¢ ra 8
I's

Definition
A perfect phylogeny for M is a rooted
tree T with n leaves such that:

© Each taxon labels only one leaf

© Each character labels only one edge

© Character possessed by a taxon are
on unique path to root

v

Root node is all zero ancestor

= O H O 0

OI—‘OI—‘O&

OI—*OC)C)_Q

OOI—‘OO&P
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Two-state Pertect Phylogeny Problem

Input:
Matrix M € {0,1}"™ has n taxa and e B
? n 1 ]. O O 0
m characters 10 0 1 0 0
@ Taxon f has state 1 for character ¢ s |1 1 0 0 1
& f possesses character ¢ 10 0 1 1 0
k10 1 0 0 O

Problem
Given M € {0,1}"*™ does M have a perfect phylogeny?
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Try it yourself!

Only one of these matrices can be used to build a perfect phylogeny.

(1) As a group, decide on an approach to try to determine which one is which.
(2) Try out your approach to see if you can construct the tree.

(3) What did you learn from your attempt?

Characters Characters
C,CCC,C C,CC C,C

Al0O1 00O Al0O O1 10

M,= 8B/ 00 100 M,= S B[00 101
2Cl11000 2@ C11001
“"D0OO0110 “"D11000
E|l1 1 0 0 1 EI0O 1 0 0 1
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The Perfect Phylogeny Problem — Preliminaries

Problem
Given M € {0,1}"™ does M have a perfect phylogeny? J

Definition
I(c) is the set of taxa that possess character c; and o(f) is the set of
characters possessed by taxon f.

a2 o) <@ al
r 1 0
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ra
rs

r3
ra
rs

= o R o R0
o~ orolf
&
o+ OO o
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oo+~ OHR
o~oooll
oo~ oolf
Ny
HORO
OO OM
oORrOR
ocoroOO

I(c1) = {r, rs}

o(rn) ={a, !}

Sort columns of M s.t. ¢ < d iff |I(c)| > |I(d)|. Break ties arbitrarily. J .




@ Consider rows of M iteratively c < d iff [I(c)| > |I(d)|

» T; is tree of first i rows of M

0
—

0
N

0
(6]

@ [ is a path graph

c3 (o7}
. rn 1 1 0 0 0
» Terminal nodes r and 1 | o o 1 0 o0
1 1 0 1 0
» |o(1)| + 1 edges labeled by o(1) elo o 1 o 1
I 1 0 0 0 0

C1

C2

1
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@ Consider rows of M iteratively c < d iff [I(c)| > |I(d)]

> T;is tree of first i rows of M

@ [ is a path graph

0

[Ty
0

N
o]
($)]

c3 C4
_ r 1 1 0 0 0
» Terminal nodes r and 1 r; o o0 1 0 0
» |o(1)| + 1 edges labeled by o(1) 1o o 1 o 1
: n 1 0 0 0 0
@ ;.1 is a supertree of T; °
» Let v be last node on walk from r r
matching characters o(i + 1) a

* Character d is the last match
* Unmatched characters 7(i + 1)

C2

L]



@ Consider rows of M iteratively c < d iff [I(c)| > |I(d)|

> T; is tree of first / rows of M

@ T is a path graph & @& @m = o
. rn 1 1 0 0 0
» Terminal nodes r and 1 | 0 0o 1 0 o0
> |o(1)| + 1 edges labeled by o(1) 1o o 1 o 1
@ T;.1 is a supertree of T; Bls 8 8 8 8
» Let v be last node on walk from r r
matching characters o(i + 1) o c3

* Character d is the last match
* Unmatched characters 7(i + 1)

» Extend T; with path I1 T2

* [1 has terminals v and 7 41
* [1 has |[7(i +1)| + 1 edges
labeled by 7(/ + 1)

C2

1



@ Consider rows of M iteratively c < diff [I(c)| > |I(d)|

» T, is tree of first / rows of M

@ [ is a path graph 6 o o o c
» Terminal nodes r and 1 2 cl) (1) ? 8 8
» |o(1)| + 1 edges labeled by o(1) . S
@ T;.1 is a supertree of T; s 000
» Let v be last node on walk from r r
matching characters o(i + 1) 1 3

* Character d is the last match
* Unmatched characters 7(i + 1)

» Extend T; with path I1 T2

* [] has terminals v and /1 + 1
* [1 has |[7(i + 1)| + 1 edges
labeled by 7(i + 1)

C2

1



@ Consider rows of M iteratively
» T, is tree of first / rows of M
@ T4 is a path graph
» Terminal nodes r and 1
> |o(1)| + 1 edges labeled by o(1)

@ ;i1 is a supertree of T;
» Let v be last node on walk from r
matching characters o(i + 1)

* Character d is the last match
* Unmatched characters 7(i + 1)

» Extend T; with path [l

* [1 has terminals v and / + 1
* [1 has |7(i +1)| + 1 edges
labeled by 7(i 4+ 1)

Lemma

Let M; € 0,1'*™ be a submatrix of M.
perfect phylogeny for M;.

c < d iff |1(c)| > |I(d)

(5] (8) c3 C4 Cr
n 1 1 0 0 0
r 0 0 1 0 0
r3 1 1 0 1 0
ra 0 0 1 0 1
rs 1 0 0 0 0

If M is conflict-free then T; is a
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Integer Characters

Species

O O W@ P>

Characters

3 Characters have k

possible states

R RO ||
R IN|N RN
O | R |k |k

R =N |O|bD
N (R [N O | U

Question: Given n integer characters with k states,
what is the smallest parsimony score?




Infinite Alleles Model = Multi-state Perfect Phylogeny

Infinite alleles model:

* For any mutation, there are an

- infinite number of possibilities of
what mutation looks like (states).

* So, the same position can be

Mutation Site mutated multiple times, but it

« never mutates to the same “allele”

or state.

Site History:

.

Time

Characters have integer states




Infinite Alleles Model = Multi-state Perfect Phylogeny

Infinite alleles model:

* For any mutation, there are an

- infinite number of possibilities of
what mutation looks like (states).

* So, the same position can be

Mutation Site mutated multiple times, but it
« never mutates to the same “allele”
or state.
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Infinite Alleles Model = Multi-state Perfect Phylogeny

Infinite alleles model:
* For any mutation, there are an
- infinite number of possibilities of
what mutation looks like (states).
* So, the same position can be
Mutation Site mutated multiple times, but it
« never mutates to the same “allele”
or state.

Site History:

Tk W

Time

Characters have integer states




Multi-state Perfect Phylogeny

C1 18] a3
. . nxXm " 1 2 1
Matrix M € {0,...,k — 1} has =i o o
n taxa and m characters nl2 2 0
ra 0 1 0
I's 0 2 2

Definition r1(1,2,1) ro(1,0,0)

A multi-state perfect phylogeny for M is a
tree T with n leaves such that:

© Each taxon labels exactly one leaf
@ Each node is labeled by {0,..., k—1}"

© Nodes labeled with state i for character
c form a connected subtree T.(/) r4(0,1,0)

Theorem (Bodlaender et al., 1992) [Bodlaender, Fellows and Warnow]
For general k, the multi-state perfect phylogeny problem is NP-complete

J
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Cladistic vs. Qualitative Characters

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:
© Each taxon labels exactly one leaf
@ Each node is labeled by {0,..., k—1}™

© Nodes with state i for character ¢ form a connected subtree T.(/)

00
0 10

o 11
A phylogeny T is consistent - o o
if the reduced tree o(T,c) is
identical with t. for all ¢ tasto e

state tree t. on its states

A cladistic character ¢ has a J

T !

r2

T3 T4

NN R
— =N O

3

yyya

2
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Cladistic vs. Qualitative Characters

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:
@ Each taxon labels exactly one leaf
@ Each node is labeled by {0,..., kK — 1}

© Nodes with state i for character ¢ form a connected subtree T.(/)

A cladistic character ¢ has a
state tree t. on its states

r
T2
3

— NN
— N O

A phylogeny T is consistent .
if the reduced tree o(T,c) is ©
identical with t. for all ¢ as Ty
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Cladistic vs. Qualitative Characters

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:
@ Each taxon labels exactly one leaf
@ Each node is labeled by {0,..., kK — 1}

© Nodes with state i for character ¢ form a connected subtree T.(/)

A cladistic character ¢ has a
state tree t. on its states

r
T2
3

— NN
— N O

A phylogeny T is consistent .
if the reduced tree o(T,c) is ©
identical with t. for all ¢ as Ty
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Multi-state Cladistic Perfect Phylogeny
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Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;] and tree T with m leaves, find

assignment of character states to each internal vertex of T
with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;], find a tree T with m leaves labeled

according to A and an assignment of character states to each internal
vertex of T with minimum parsimony score.




General Large Maximum Parsimony Phylogeny

* This problem is
NP-hard

* Heuristics using
local search (tree
moves)

1. Start with an arbitrary tree T.
Check “neighbors” of T.

Move to a neighbor if it provides the best
improvement in parsimony/likelihood score.

Caveats: , ai;\.,-;,
Could be stuck in local A QN
optimum, and not . LN

achieve global
optimum
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Example: Nearest-Neighbor Interchange (NNI)

B (©O<2
&% ® AB|CD
® ®
=0 ®
O &® AC|BD
%220 ®
e ®
) & AD|BC
® (O,

Rearrange four subtrees
defined by one
internal edge

Figure: Jones and Pevzner

35



Outline

* Summary

Reading:
* Lecture notes



Distance-based Phylogeny Character-based Phylogeny

* Small additive distance phylogeny problem * Small maximum parsimony problem
* InP * Sankoff algorithm: dynamic programming
* Recursive algorithm using neighboring leaves « Two-state perfect phylogeny problem
* Large additive distance phylogeny problem * In P: O(mn) time
* In P -- two algorithms: * Complete characterization as conflict free
1. Find degenerate triples and resolve these binary matrices

2. Neighbor joining: identifies neighboring leaves even o Multi-state perfect phylogeny problem
when tree is not given

« Complete characterization of additive matrices using * NP-hard in general

the four-point condition * InP given state trees
e Large maximum parsimony problem
* NP-hard
A BCOD * Heuristic using local search
A0 2 4 4
B2 0 4 4
cCl(4 4 0 2
D4 4 2 0




