CS 466

Introduction to Bioinformatics
Lecture 16




Outline

* Character-based phylogeny (small)
* Application of small phylogeny maximum parsimony problem to cancer

Reading:
* Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner



Character-Based Tree Reconstruction

* Characters may be morphological features
e Shape of beak {generalist, insect catching, ...}
* Number of legs {2,3,4, ..}
* Hibernation {yes, no}

* Character may be nucleotides/amino acids
° {AI TI CI G}
e 20 amino acids

e \Values of a character are called states
e We assume discrete states

G | Insect catching
Grain eating Coniferous-seed eating
. N\
Nectar feeding Fruit eating
Chiseling Dip netting
-
Scything
VP r

Probing Filter feeding
ﬁ .
Aerial fishing Pursuit fishing



Character-Based Phylogeny Reconstruction

Input

characters

Output
optimal tree

Question: What is optimal?

Want: Optimization criterion




Character-Based Phylogeny Reconstruction

Input

characters

Output
optimal tree

Question: What is optimal?

Want: Optimization criterion

Question: How to optimize this criterion?

Want: Algorithm




Character-Based Phylogeny Reconstruction: Input

Characters / states |State 1 m




Character-Based Phylogeny Reconstruction: Criterion

OO0 0 6 00 @

Question: Which tree is better?




Character-Based Phylogeny Reconstruction: Criterion

(a) Parsimony Score=3 (b) Parsimony Score=2

Parsimony: minimize number of changes on edges of tree




Why Parsimony?

* Ockham’s razor: “simplest” explanation
for data

e Assumes that observed character
differences resulted from the fewest
possible mutations

* Seeks tree with the lowest parsimony
score, i.e. the sum of all (costs of)
mutations in the tree.

=\ 4y~ “All things being
g i wc(equal, the simplest

‘ ‘-solution tends to be
he best one.”

'William of Ockham



Again, a Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;] and tree T with m leaves, find

assignment of character states to each internal vertex of T
with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;], find a tree T with m leaves labeled

according to A and an assignment of character states to each internal
vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?




Again, a Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;] and tree T with m leaves, find

assignment of character states to each internal vertex of T
with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;], find a tree T with m leaves labeled

according to A and an assignment of character states to each internal
vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?




Small Maximum Parsimony Phylogeny Problem

ACCC ACCC

AN

ACCA ACCG ACCA ATCC

NN

ATCG ATCC ATCG ACCG

Less More
Parsimonious Parsimonious
Score: 6 Score: 5

Question: There are n = 4 characters in the m = 2 taxa (leaves).
Can we solve each character separately?




Small Maximum Parsimony Phylogeny Problem

ACCC ACCC

AN

ACCA ACCG ACCA ATCC

NN

ATCG ATCC ATCG ACCG

Less More
Parsimonious Parsimonious
Score: 6 Score: 5

Key observations: (1) Characters can be solved independently.
(2) Optimal substructure in subtrees.




Recurrence



Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:
Given rooted tree T whose leaves are labeled by ¢ : L(T) — X, find assignment
of states to each internal vertex of T with minimum parsimony score.

Let u(v, s) be the minimum number of mutations in the subtree rooted at v
when assigning state s to v.

c(s,t) = 0, ifs=1 Let 0 (v) be the set of children of v.
1, if s#t,
00, if ve L(T) and s # o(v),
u(v, s) = min < 0, if ve L(T) and s = o(v),

D wes(vy Miex{c(s, t) + p(w,t)}, if v & L(T).



Example

0, ifs=t
C(s)t)_{la I s

if s # ¢,
00, if v e L(T) and s # o(v),
p(v,s) = min < 0, if v € L(T) and s = o(v),
D wes(vy Mitex{c(s, t) + p(w, )}, if v & L(T).



Sankoff Algorithm (Sankoff 1975)

Small Maximum Parsimony Phylogeny Problem:
Given m X n matrix A = [a; ;] and tree T with m leaves, find

assignment of character states to each internal vertex of T
with minimum parsimony score.
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Outline

* Application of small phylogeny maximum parsimony problem to cancer

Reading:
* Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner



Tumorigenesis: (i) Cell Mutation

Clonal Theory of Cancer
[Nowell, 1976]

Mutation

o

Founder
tumor cell



Tumorigenesis: (i) Cell Mutation, (ii) Cell Division

Clonal Theory of Cancer
[Nowell, 1976]

&-8B - ‘

Heterogeneous Tumor



Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

gl Brain
o \/ctastasis

Primary
Tumor@g==

Liver
£ 4| W Metastasis




Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

Z>— mutation

time

POV OOO® GOOB B OO &
primary tumor P metastasis M, metastasis M;

Cell Tree




Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

Z>— mutation
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Cell Tree Phylogenetic Tree T



Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

Z>— mutation

&)
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o oK © <ation 2 Vertex
= O & , labeling €
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g O ©
ST
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v\% 5% @
OO OO B OB &
primary tumor P metastasis M, metastasis M;
Cell Tree Phylogenetic Tree T

Goal: Given phylogenetic tree T, find parsimonious vertex labeling € with fewest migrations

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics, 123(3), 603—613.




Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous
ovarian cancer. Nature Genetics.

* Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]

SBwl
RETA Small Bowel
Right Fallopian LFTB .
Tube Left Fallopian
ROV Tube
Right Ovary LOv
< ApC Left Ovary
Appendix
(o) m = 7 anatomical sites
o
© (=)

A6 Al B5 B4 B3 B2 B1
RFTA Om ApC LOv LFTB SBwl Om
4



Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous
ovarian cancer. Nature Genetics.

* Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]
u*=13

Migration
grap RETA Small Bowel
Right Fallopian LFTB .
Tube Left Fallopian

RFTA Om ROV Tube

Right Ovary LOv
< ApC Left Ovary

Appendix
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Minimum Migration History is Not Unigue

* Enumerate all minimum-migration vertex labelings in the backtrace step

u*=13

SBwl

RFTA Om

RFTA

Om
ApC  Appendix " ”
LFTB Left Fallopian Tube LOv ::[ LFTB LOv ::[ LFTB
LOv  Left Ovary
RFTA R?ght Fallopian Tube N ApC ApC
ROV Right Ovary u*=13
SBwl Small Bowel
Om Omentum ROV ROV




Comigrations: Simultaneous Migrations of Multiple Clones

* Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]

 Second objective: number y of comigrations is the number of multi-edges in migration graph G*

T Not necessarily true in the case of directed cycles
F Circulating tumor cell clusters

Multicolored Red Only Cyan Only

mTomato
CFP

Migration Graph G

DAPI
K14
Clone Tree T
<«
| O ApC Appendix
( LFTB Left Fallopian Tube
<« LOv  Left Ovary
RFTA Right Fallopian Tube
» ’ ROv Right Ovary

\, SBwl Small Bowel
A3 A2 Al Cl B5 B4 B3 B2 Bl
Gt () (&) () G (8) () () (8) (@) (&) (B (&) (s ) () (3 Om  Omentum



Comigrations: Simultaneous Migrations of Multiple Clones

* Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]

 Second objective: number y of comigrations is the number of multi-edges in migration graph G*

u*=13
y=10
RFTA Om

ApC  Appendix

LFTB Left Fallopian Tube
LOv  Left Ovary

RFTA Right Fallopian Tube
ROv Right Ovary

SBwl Small Bowel

Om Omentum

u*=13

T Not necessarily true in the case of directed cycles
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Constrained Multi-objective Optimization Problem

Parsimonious Migration History (PMH): Given a phylogenetic tree T and aset P € {S,M, R}
of allowed migration patterns, find vertex labeling £ with minimum migration number u*(T)

and smallest comigration number 7 (T).

single-source seeding (S) multi-source seeding (M) reseeding (R)
a P = (S} b P = (S, M) c P = (S, M, R)
(1"4) = (6,2) : (W' 4) = (5,3) Q (1",4) = (4,4) 9
Wi
Vertex Migration Gp
labeling £4 |graph G 4 12 (M)

(S)

clelelelele A :
Phylogenetic tree T' Leaf labeling ¢ (T,¢)

(T.4)

El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50(5), 718—-726.
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Results [El-Kebir, WABI 2018]

Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set P € {S, M, R}
of allowed migration patterns, find vertex labeling £ with minimum migration number u*(T)

and smallest comigration number y(T).

single-source seeding (S)

a P = {5) Theorem 1: PMH is NP-hard when P = {S}

(1*,4) = (6,2) 1
LYVY

Vertex Migration
labeling £4 |graph G 4

(s)
Theorem 2: PMH is fixed parameter

tractable in the number m of locations
OO0 > | lwhen P = {S}

Phylogenetic tree 1" Leaf Iabelingé




PMH is NP-hard when P = {S} n

I T2 T3

3-SAT: Given @ = Ai; (Vi1 V iz V ¥i3) 5
with variables {x4, ..., x,,} and k clauses, ﬂxﬂ/ HIEENE
find ¢ : [n] — {0,1} satisfying ¢ 2 = {X{, e, Xy, 1X1, ere, 21Xy, C1y one Cp 5 L}




PMH is NP-hard when P = {S}

3-SAT: Given @ = Afoy (Viq V Yi2 V Vi3)
with variables {x;, ..., x,,} and k clauses,

find ¢ : [n] — {0,1} satisfying ¢

Three ideas:

1. Ensure that (x, =x) € E(G)
or (—x,x) € E(G)

2. Ensure that f*(r(T)) =1

3. Ensure that @ is satisfiable if
and only if £* encodes a
satisfying truth assignment

1
i) X3
X2 X3 C2

eeeeee

eeeee

-

j
Variablegadget T'[z;]

d (9 leaves )
.
DICIOIDIO, (Y6
O OOOO
H_j\ Y J L T J
Ci Yij =2 Wij = Ty

: J
Clause literal gadget T'[y; ;]




PMH is NP-hard when P = {S} n

3-SAT: Given @ = A=y (Vi1 V ¥i2 V ¥i3) I
with variables {x4, ..., x,,} and k clauses, mf HIEENE
find ¢ : [n] — {0,1} satisfying ¢ 2 = {X{, e, Xy, 1X1, ere, 21Xy, C1y one Cp 5 L}

Three ideas:

1. Ensure that (x, =x) € E(G)
or (—x,x) € E(G)

2. Ensure that f*(r(T)) =1

b (2B leaves )| € (Aleaves )||d (9 leaves )

3. Ensure that @ is satisfiable if 2
and only if £* encodes a /5%\0 YPPPP
SatISfyIng trUth aSSIgnment VﬁiiablegadgetT_[ifj] Rootgaf:i_getT[J_] ) %I7;ujeglb)i1eralgadget Tﬁ[qil;]:ﬁgg7

Lemma: Let B > 10k +1and A4 > 2Bn + 27k.
Then, @ is satisfiable if and only if u*(T) = (B + 1)n + 25k




u*(T) = (B + Dn + 25k
R =23%3+50%2 =119

PMH is NP-hard when P = {S}

P = (xl VXx,V —|X3) 7A\ (—lxl, —1Xo, —|X3) | T[]

k=2,n=3 C Ty

[xl]

T[CBQ]

r,

B =10k + 2 = 22
T.Ig
A=2Bn+27k+1 =187 Tl
S
;‘: T'y1,2]
o \‘ T(y2,3]
o ©
-
< Tly1,3

AR

Y = {xq, X, X3, 11X, 11X, X3, Cq1,Cp, L} ol

Lemma: Let B > 10k +1and A4 > 2Bn + 27k.
Then, @ is satisfiable if and only if u*(T) = (B + 1)n + 25k .




PMH is FPT in number m of locations when P = {S}

Leaf Vertex
labeling /¢ | labeling ¢*
N
Phylogenetic tree T’ Migration tree G Phylogenetic tree T’

Lemma: If there exists labeling £ consistent with G then

dr(u,v) > da(lcags(u), £(v)) Vu,v € V(T) such that u <7 v. (1)
£ () = {LCA(a(?v(T)). if v = r(T),
o(l*(m(v)),LCAx(v)), if v#r(T),

where o(s,t) = s if s =t and otherwise o(s,t) is the unique child of s that lies on the path
from s to t in G.

Lemma: If (1) holds then £* is a minimum migration labeling consistent with G. ,




PMH is FPT in number m of locations when P = {S}

Leaf Vertex
labeling /¢ | labeling ¢*
N
Phylogenetic tree T’ Migration tree G Phylogenetic tree T’

Lemma: If there exists labeling £ consistent with G then

dr(u,v) > da(lcags(u), £(v)) Vu,v € V(T) such that u <7 v. (1)
() = {LCA@W» v = r(T),
o(l*(m(v)),LCAx(v)), if v#r(T),

where o(s,t) = s if s =t and otherwise o(s,t) is the unique child of s that lies on the path
from s to t in G.

Lemma: If (1) holds then £* is a minimum migration labeling consistent with G.
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Simulations

a . b

lo.l
mutation rate
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=
= 1 ILP-0.1
40 e : ] FPT-0.1
§° 10-2 . (P10
20 E B FPT-1.0
4 6 8 L 4 6 8
number m of locations number m of locations

Available on: https://github.com/elkebir-group/PMH-S
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