CS 466 Introduction to Bioinformatics Lecture 16

Mohammed El-Kebir October 20, 2021

Outline

- Character-based phylogeny (small)
- Application of small phylogeny maximum parsimony problem to cancer

Reading:

• Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner

Character-Based Tree Reconstruction

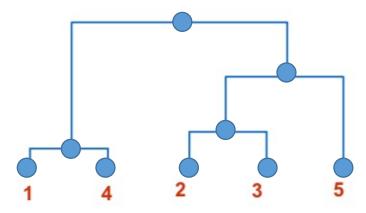
- Characters may be morphological features
 - Shape of beak {generalist, insect catching, ...}
 - Number of legs {2,3,4, ..}
 - Hibernation {yes, no}
- Character may be nucleotides/amino acids
 - {A, T, C, G}
 - 20 amino acids
- Values of a character are called states
 - We assume discrete states

Character-Based Phylogeny Reconstruction

Output optimal tree

Question: What is optimal?

Want: Optimization criterion



Character-Based Phylogeny Reconstruction

Input characters

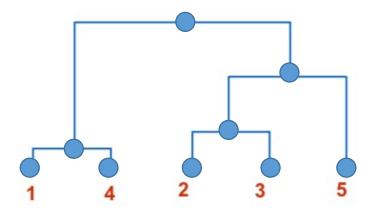
Output optimal tree

Question: What is optimal?

Want: Optimization criterion

Question: How to optimize this criterion?

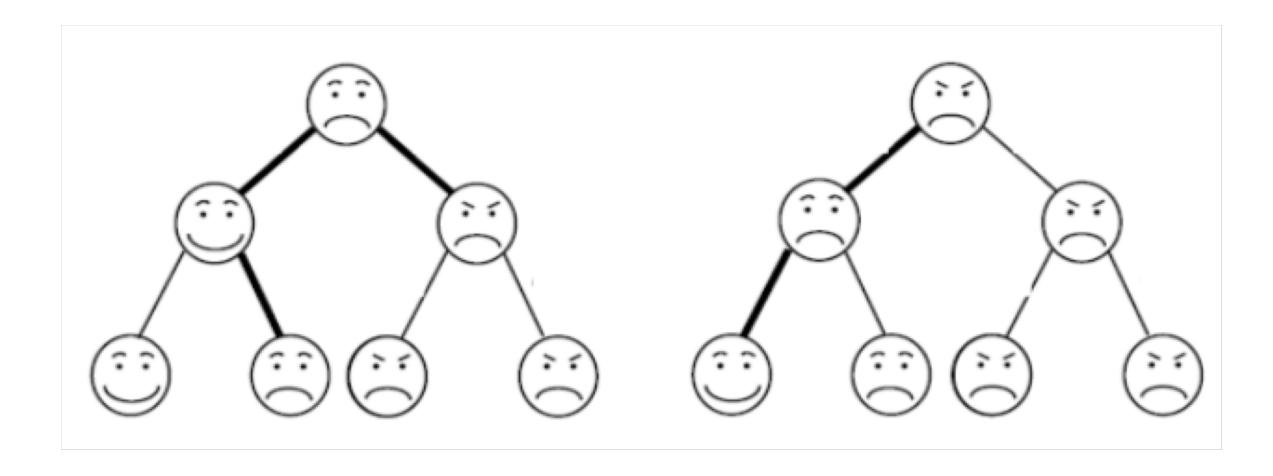
Want: Algorithm



Character-Based Phylogeny Reconstruction: Input

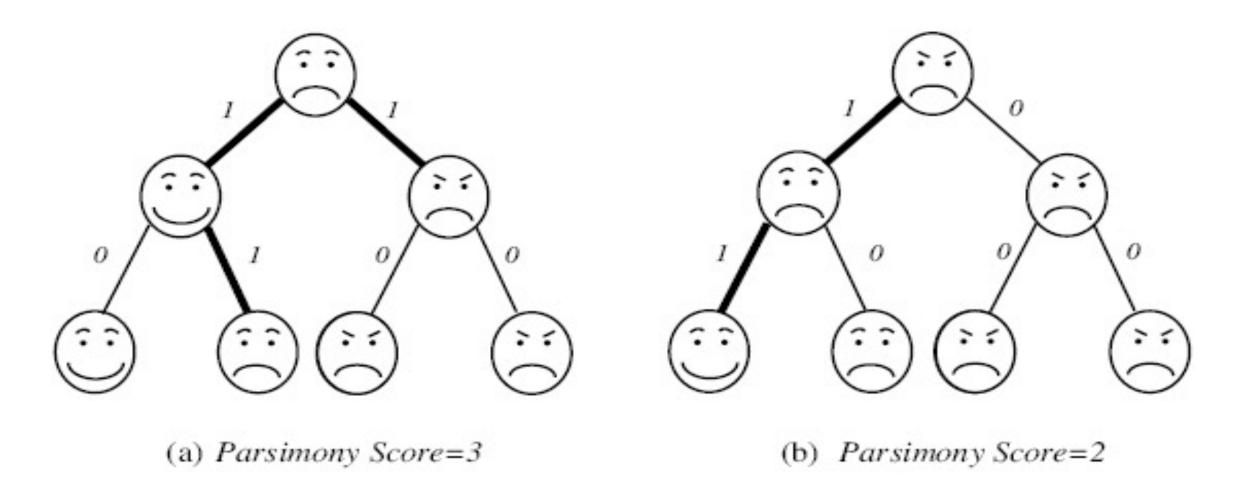
Characters / states	State 1	State 2
Mouth	Smile	Frown
Eyebrows	Normal	Pointed

Character-Based Phylogeny Reconstruction: Criterion



Question: Which tree is better?

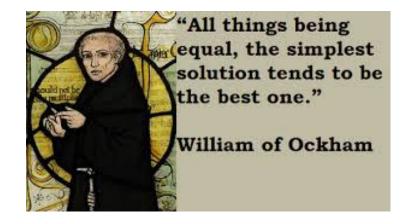
Character-Based Phylogeny Reconstruction: Criterion



Parsimony: minimize number of changes on edges of tree

Why Parsimony?

- Ockham's razor: "simplest" explanation for data
- Assumes that observed character differences resulted from the fewest possible mutations
- Seeks tree with the lowest parsimony score, i.e. the sum of all (costs of) mutations in the tree.



Again, a Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?

Again, a Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

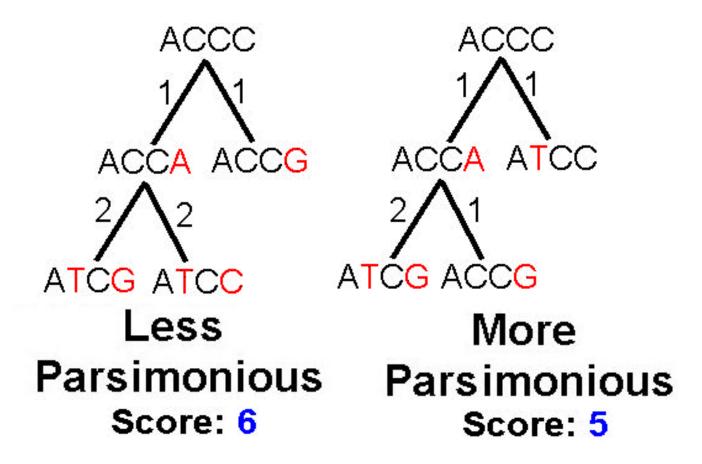
Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

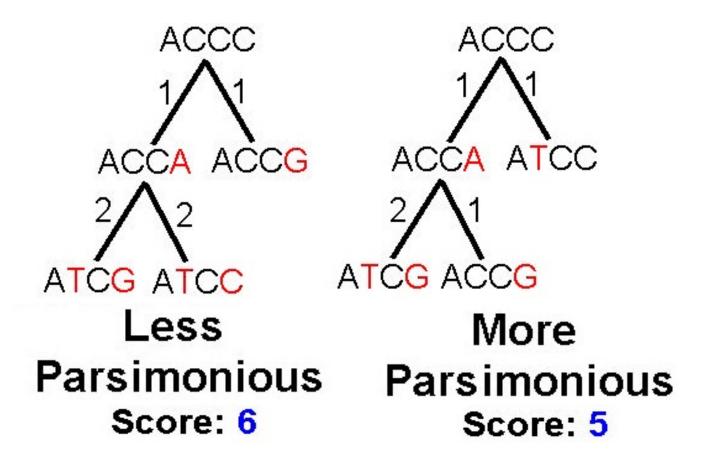
Question: Are both problems easy (i.e. in P)?

Small Maximum Parsimony Phylogeny Problem



Question: There are n=4 characters in the m=2 taxa (leaves). Can we solve each character separately?

Small Maximum Parsimony Phylogeny Problem



Key observations: (1) Characters can be solved independently. (2) Optimal substructure in subtrees.

Recurrence

Recurrence for Small Maximum Parsimony Problem

Small Maximum Parsimony Phylogeny Problem:

Given rooted tree T whose leaves are labeled by $\sigma: L(T) \to \Sigma$, find assignment of states to each internal vertex of T with minimum parsimony score.

Let $\mu(v,s)$ be the minimum number of mutations in the subtree rooted at vwhen assigning state s to v.

$$c(s,t) = \begin{cases} 0, & \text{if } s = t \\ 1, & \text{if } s \neq t, \end{cases}$$

Let $\delta(v)$ be the set of children of v.

$$\mu(v,s) = \min \begin{cases} \infty, & \text{if } v \in L(T) \text{ and } s \neq \sigma(v), \\ 0, & \text{if } v \in L(T) \text{ and } s = \sigma(v), \\ \sum_{w \in \delta(v)} \min_{t \in \Sigma} \{c(s,t) + \mu(w,t)\}, & \text{if } v \notin L(T). \end{cases}$$

Example

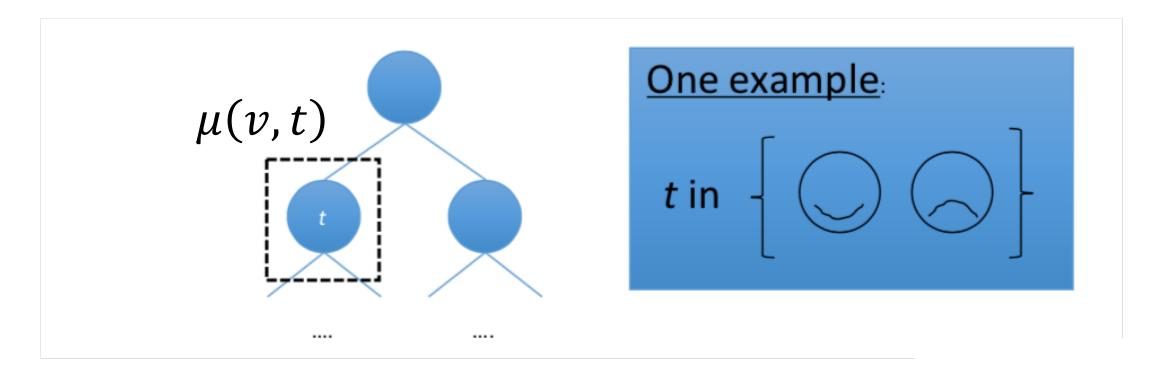
$$c(s,t) = \begin{cases} 0, & \text{if } s = t \\ 1, & \text{if } s \neq t, \end{cases}$$

$$\mu(v,s) = \min \begin{cases} \infty, & \text{if } v \in L(T) \text{ and } s \neq \sigma(v), \\ 0, & \text{if } v \in L(T) \text{ and } s = \sigma(v), \\ \sum_{w \in \delta(v)} \min_{t \in \Sigma} \{c(s,t) + \mu(w,t)\}, & \text{if } v \not\in L(T). \end{cases}$$

Sankoff Algorithm (Sankoff 1975)

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.



Outline

- Recap character-based phylogeny
- Application of small phylogeny maximum parsimony problem to cancer

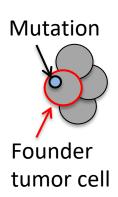
Reading:

• Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner

Tumorigenesis: (i) Cell Mutation

Clonal Theory of Cancer

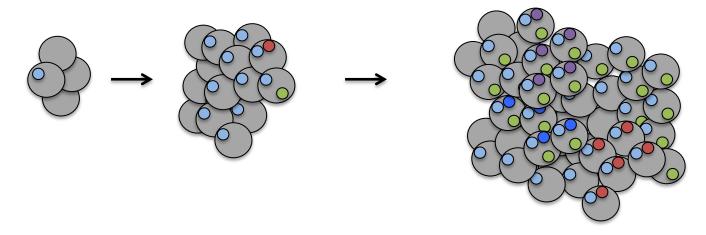
[Nowell, 1976]



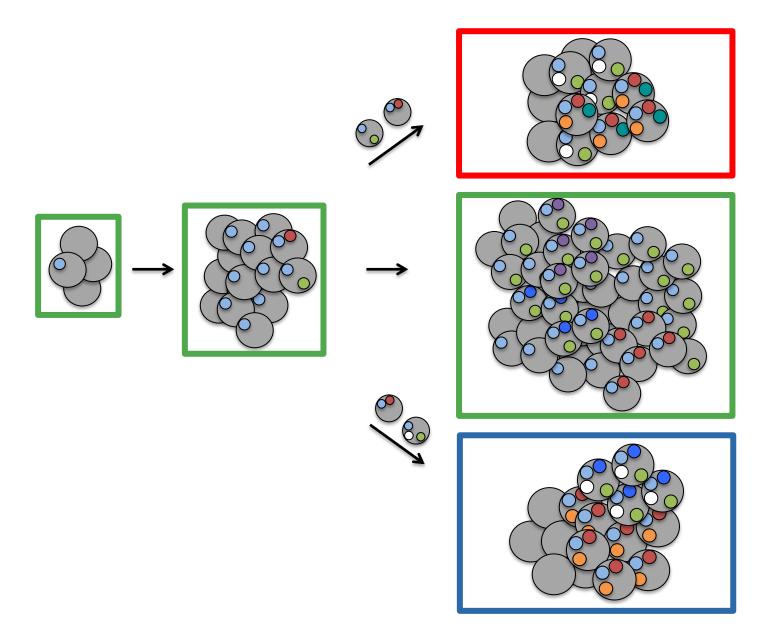
Tumorigenesis: (i) Cell Mutation, (ii) Cell Division

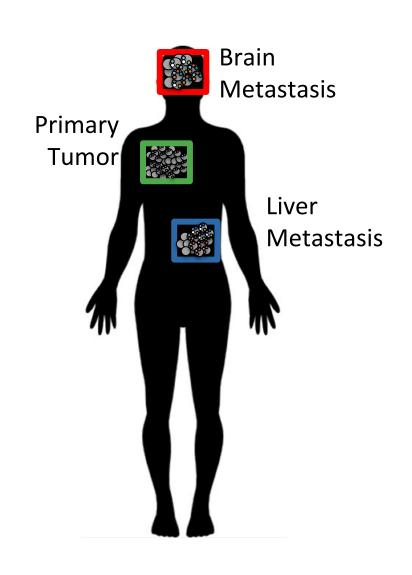
Clonal Theory of Cancer

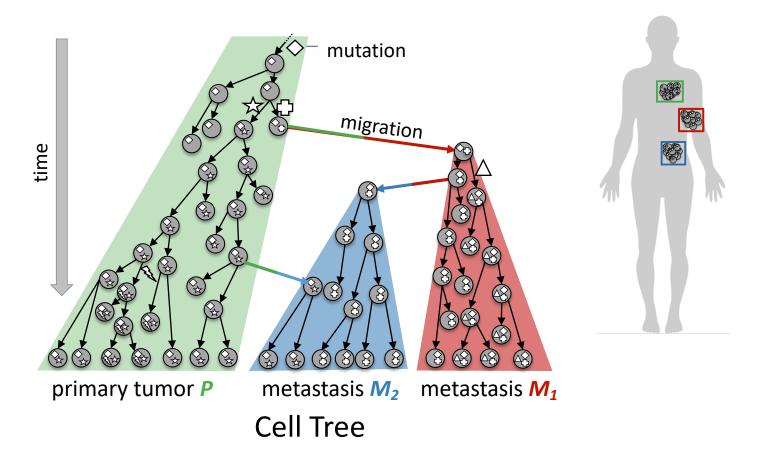
[Nowell, 1976]

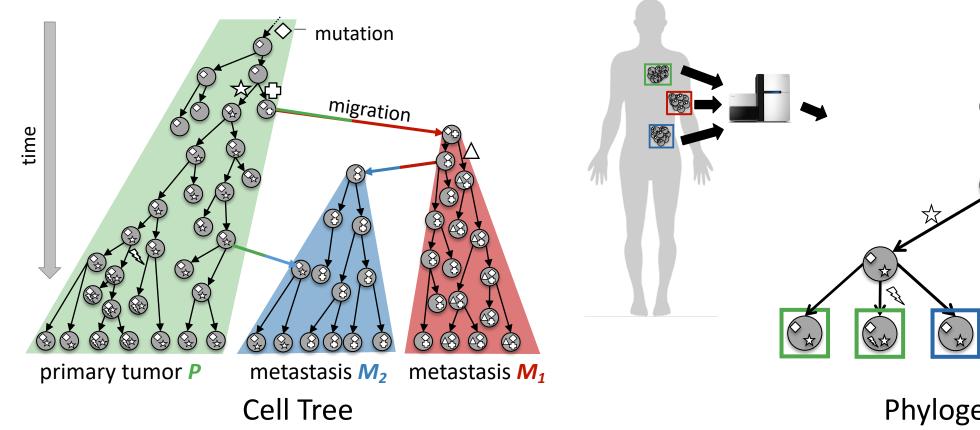


Heterogeneous Tumor

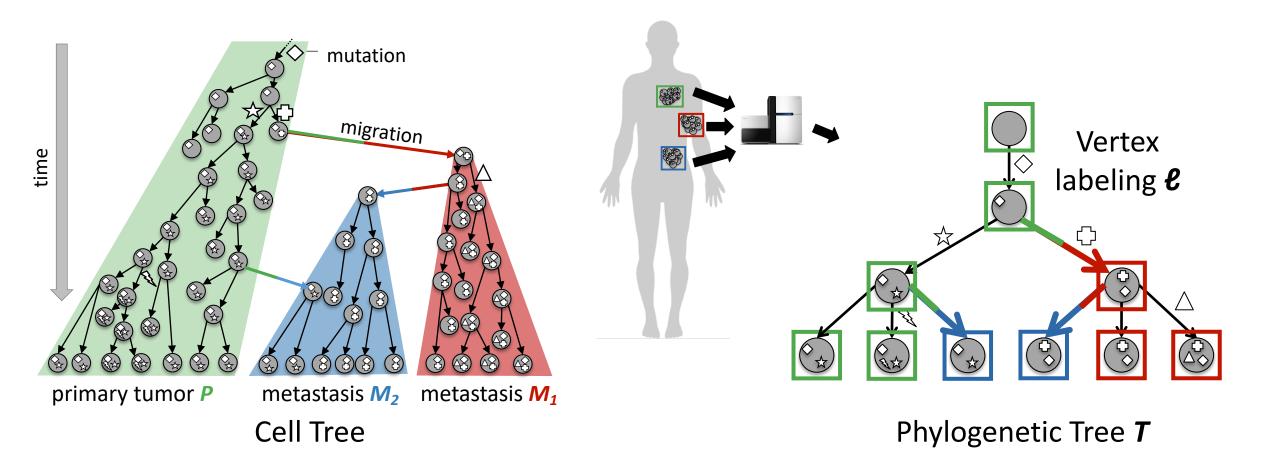








Phylogenetic Tree *T*



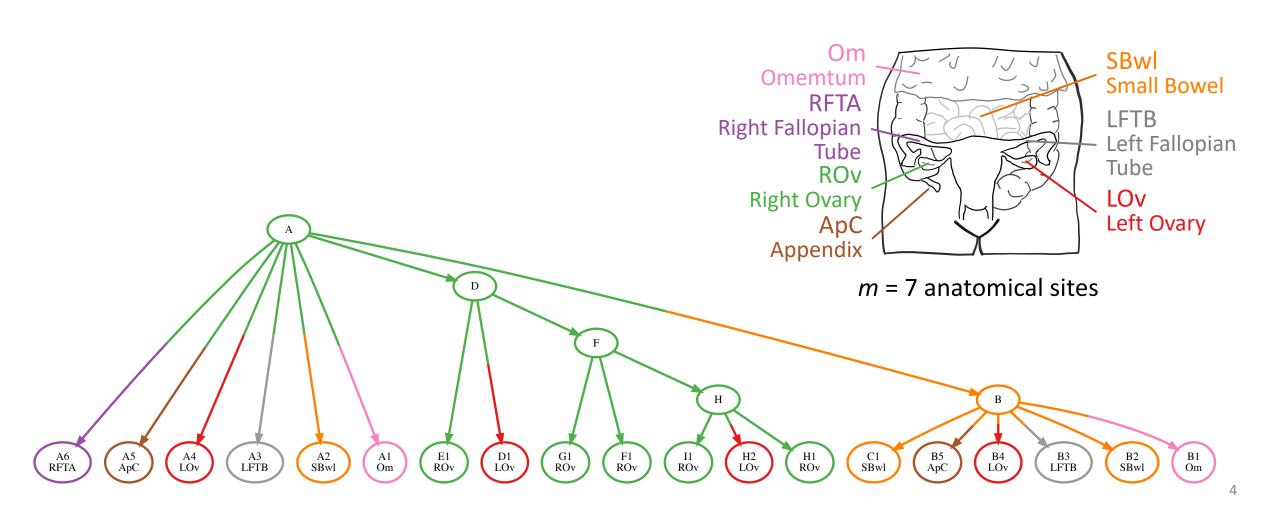
Goal: Given phylogenetic tree *T*, find *parsimonious* vertex labeling *ℓ* with fewest migrations

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. *Genetics*, 123(3), 603–613.

Minimum Migration Analysis in Ovarian Cancer

McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nature Genetics*.

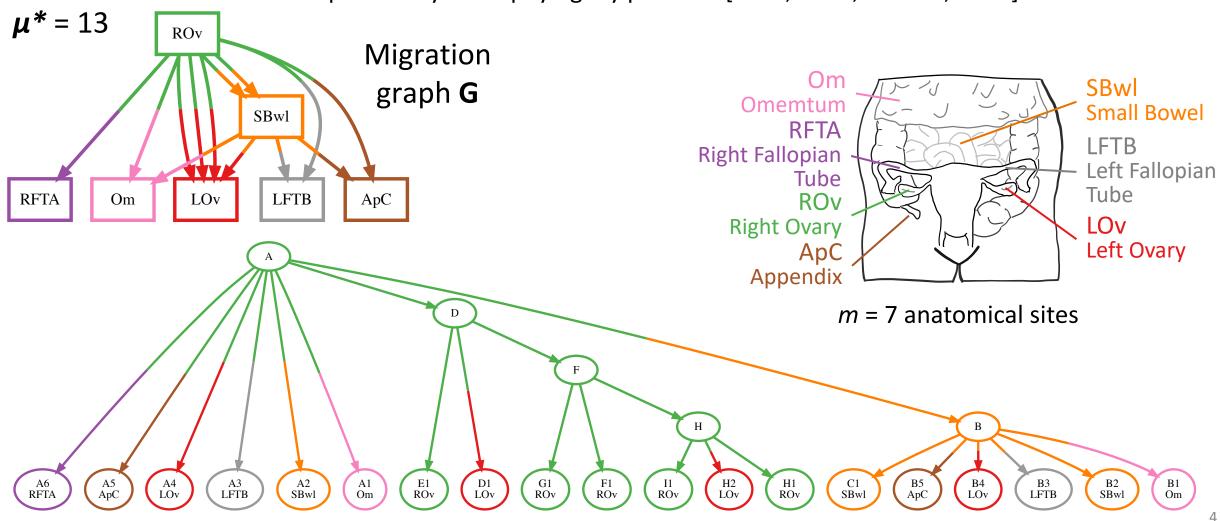
• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



Minimum Migration Analysis in Ovarian Cancer

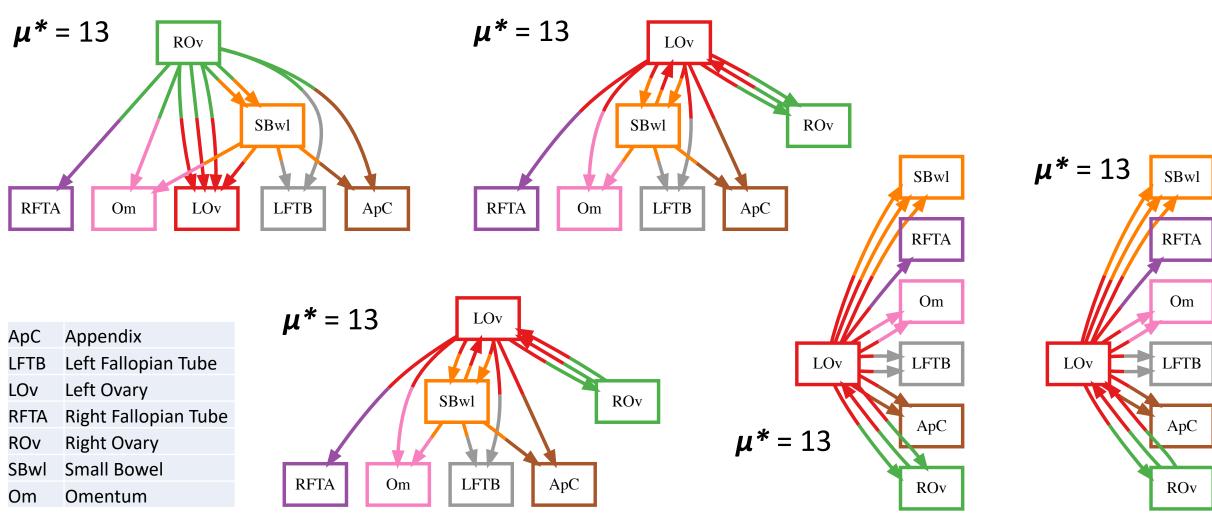
McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. *Nature Genetics*.

• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



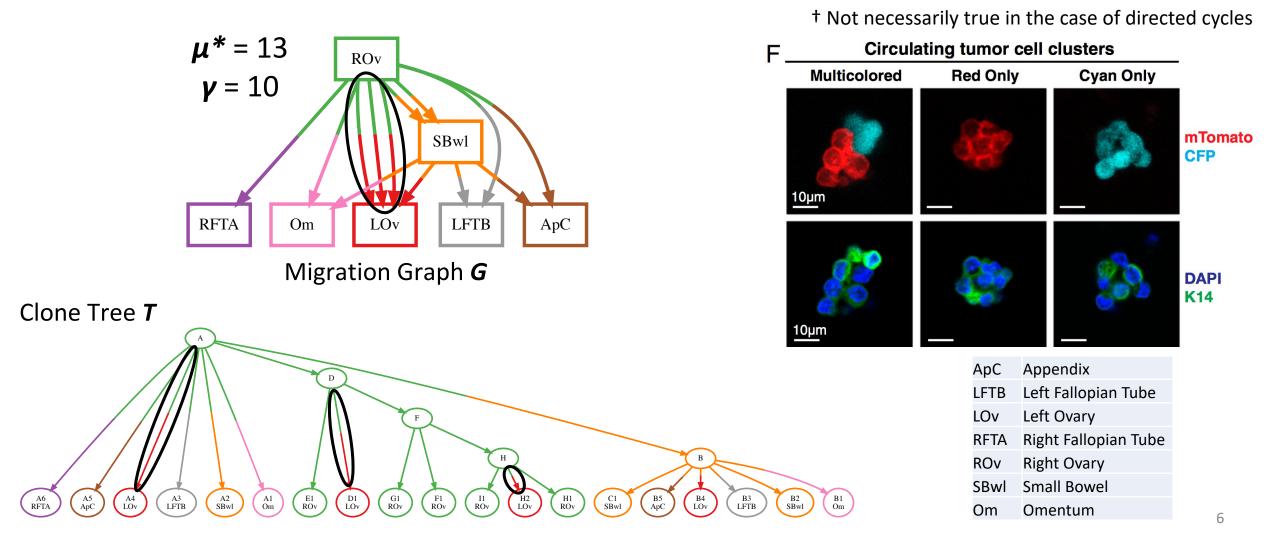
Minimum Migration History is *Not* Unique

• Enumerate all minimum-migration vertex labelings in the backtrace step



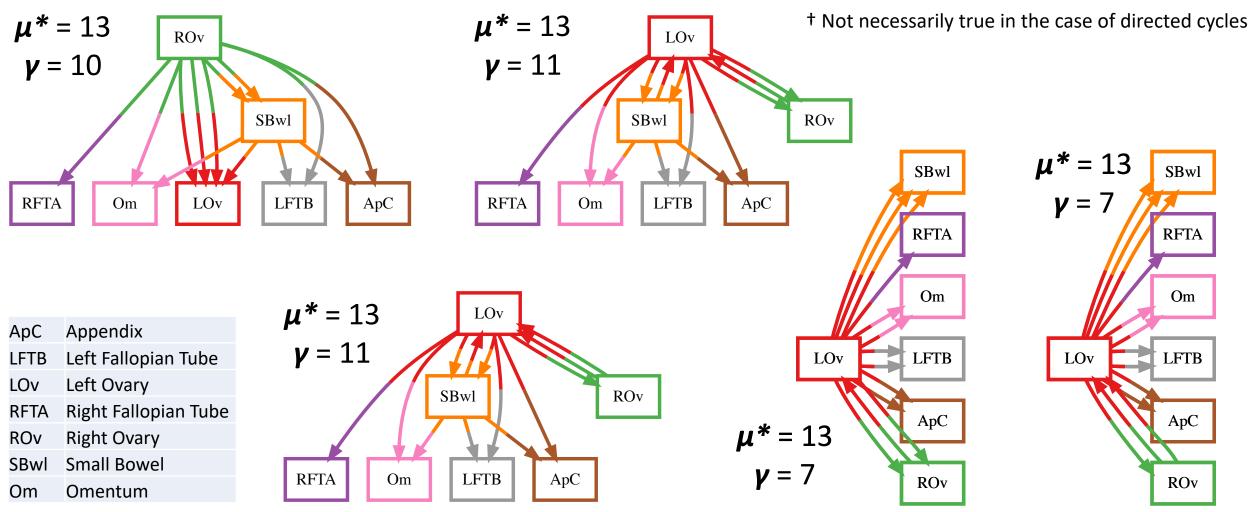
Comigrations: Simultaneous Migrations of Multiple Clones

- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G^{\dagger}



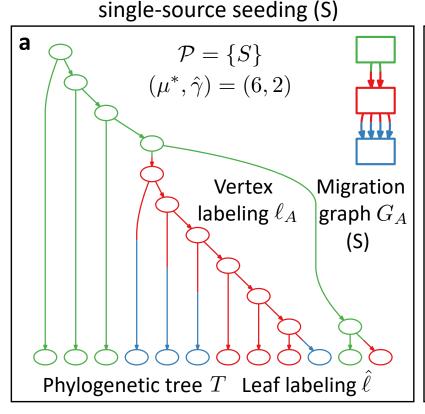
Comigrations: Simultaneous Migrations of Multiple Clones

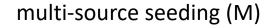
- Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
- Second objective: number γ of comigrations is the number of multi-edges in migration graph G^{\dagger}

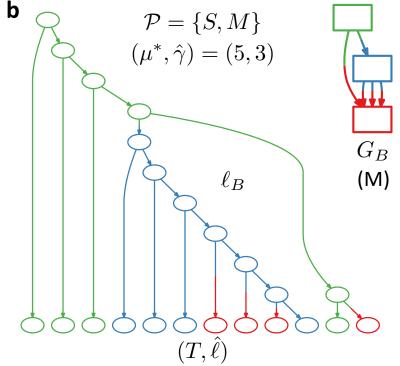


Constrained Multi-objective Optimization Problem

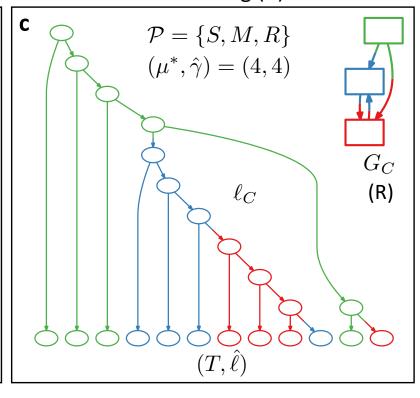
Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\widehat{\gamma}(T)$.







reseeding (R)

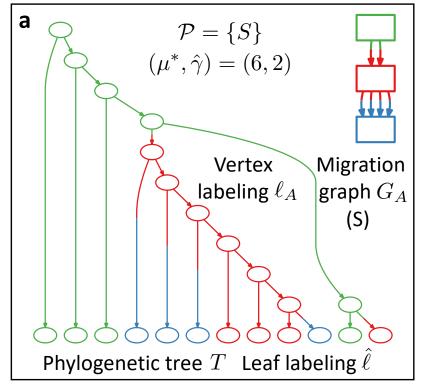


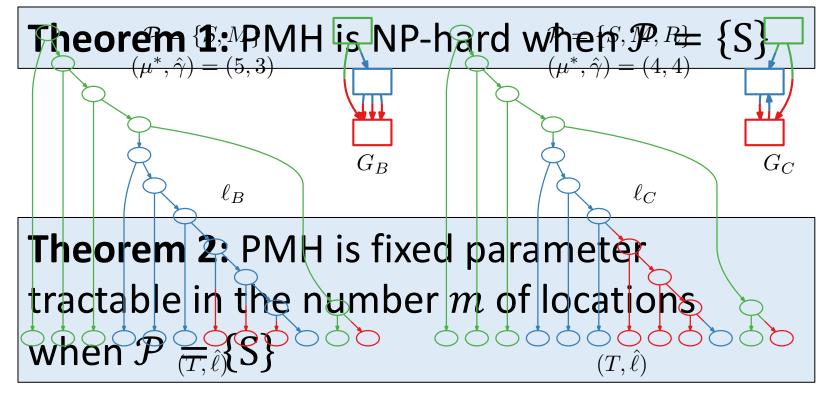
El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. *Nature Genetics*, 50(5), 718–726.

Results [El-Kebir, WABI 2018]

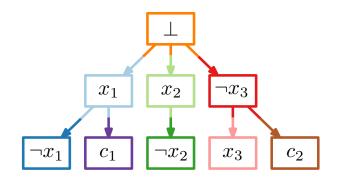
Parsimonious Migration History (PMH): Given a phylogenetic tree T and a set $\mathcal{P} \subseteq \{S, M, R\}$ of allowed migration patterns, find vertex labeling ℓ with minimum migration number $\mu^*(T)$ and smallest comigration number $\hat{\gamma}(T)$.

single-source seeding (S)



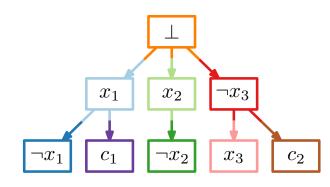


3-SAT: Given $\varphi = \bigwedge_{i=1}^k (y_{i,1} \vee y_{i,2} \vee y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\phi : [n] \to \{0,1\}$ satisfying φ



$$\Sigma = \{x_1, \dots, x_n, \neg x_1, \dots, \neg x_n, c_1, \dots c_k, \bot\}$$

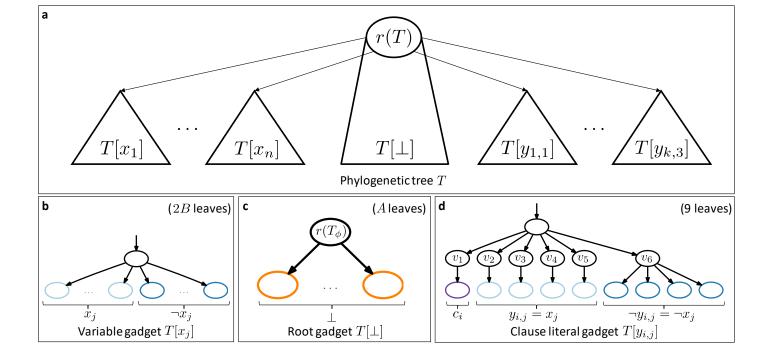
3-SAT: Given $\varphi = \bigwedge_{i=1}^k (y_{i,1} \vee y_{i,2} \vee y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\phi : [n] \to \{0,1\}$ satisfying φ



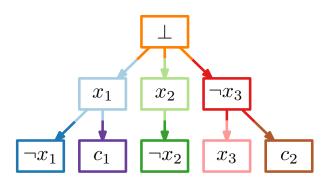
$$\Sigma = \{x_1, \dots, x_n, \neg x_1, \dots, \neg x_n, c_1, \dots c_k, \bot\}$$

Three ideas:

- 1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
- 2. Ensure that $\ell^*(r(T)) = \bot$
- 3. Ensure that ϕ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment



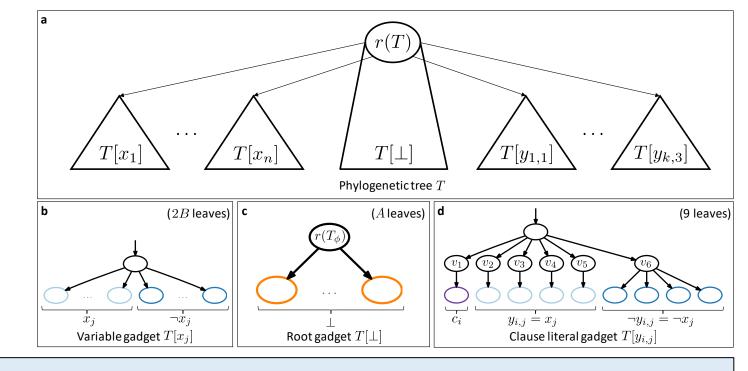
3-SAT: Given $\varphi = \bigwedge_{i=1}^k (y_{i,1} \vee y_{i,2} \vee y_{i,3})$ with variables $\{x_1, \dots, x_n\}$ and k clauses, find $\phi : [n] \to \{0,1\}$ satisfying φ



$$\Sigma = \{x_1, ..., x_n, \neg x_1, ..., \neg x_n, c_1, ... c_k, \bot\}$$

Three ideas:

- 1. Ensure that $(x, \neg x) \in E(G)$ or $(\neg x, x) \in E(G)$
- 2. Ensure that $\ell^*(r(T)) = \bot$
- 3. Ensure that ϕ is satisfiable if and only if ℓ^* encodes a satisfying truth assignment

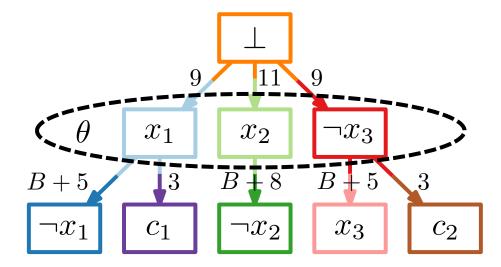


Lemma: Let B>10k+1 and A>2Bn+27k. Then, ϕ is satisfiable if and only if $\mu^*(T)=(B+1)n+25k$

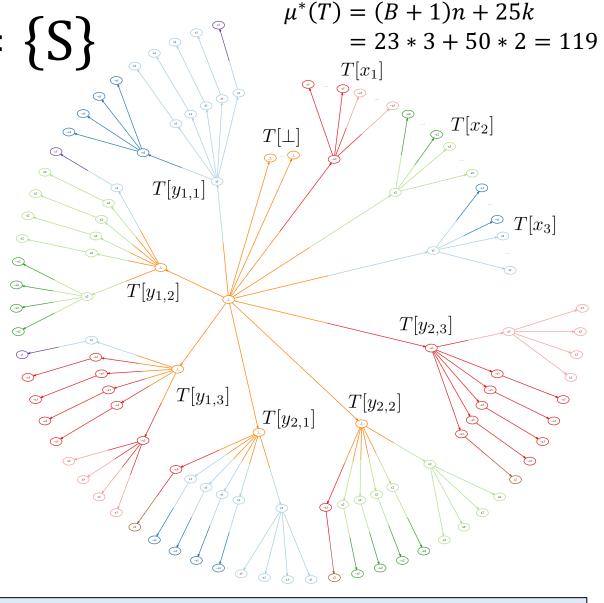
v)

$$\varphi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1, \neg x_2, \neg x_3)$$

$$k = 2, n = 3$$
 $B = 10k + 2 = 22$
 $A = 2Bn + 27k + 1 = 187$



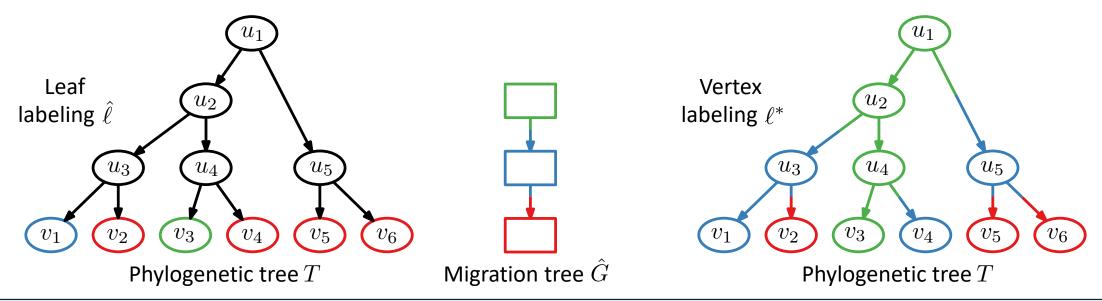
$$\Sigma = \{x_1, x_2, x_3, \neg x_1, \neg x_2, \neg x_3, c_1, c_2, \bot\}$$



Lemma: Let B > 10k + 1 and A > 2Bn + 27k.

Then, φ is satisfiable if and only if $\mu^*(T) = (B+1)n + 25k$

PMH is FPT in number m of locations when $\mathcal{P} = \{S\}$



Lemma: If there exists labeling ℓ consistent with \widehat{G} then

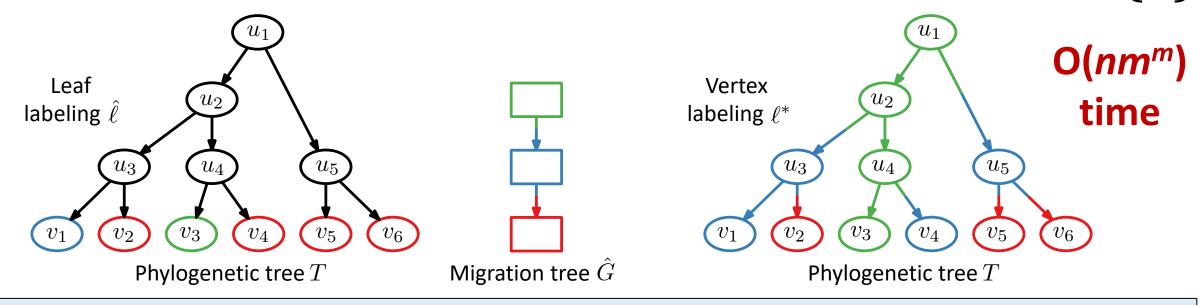
$$d_T(u,v) \ge d_{\hat{G}}(\operatorname{lca}_{\hat{G}}(u),\hat{\ell}(v))$$
 $\forall u,v \in V(T) \text{ such that } u \preceq_T v.$ (1)

$$\ell^*(v) = \begin{cases} \operatorname{LCA}_{\hat{G}}(r(T)), & \text{if } v = r(T), \\ \sigma(\ell^*(\pi(v)), \operatorname{LCA}_{\hat{G}}(v)), & \text{if } v \neq r(T), \end{cases}$$

where $\sigma(s,t) = s$ if s = t and otherwise $\sigma(s,t)$ is the unique child of s that lies on the path from s to t in \hat{G} .

Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \widehat{G} .

PMH is FPT in number m of locations when $\mathcal{P} = \{S\}$



Lemma: If there exists labeling ℓ consistent with \widehat{G} then

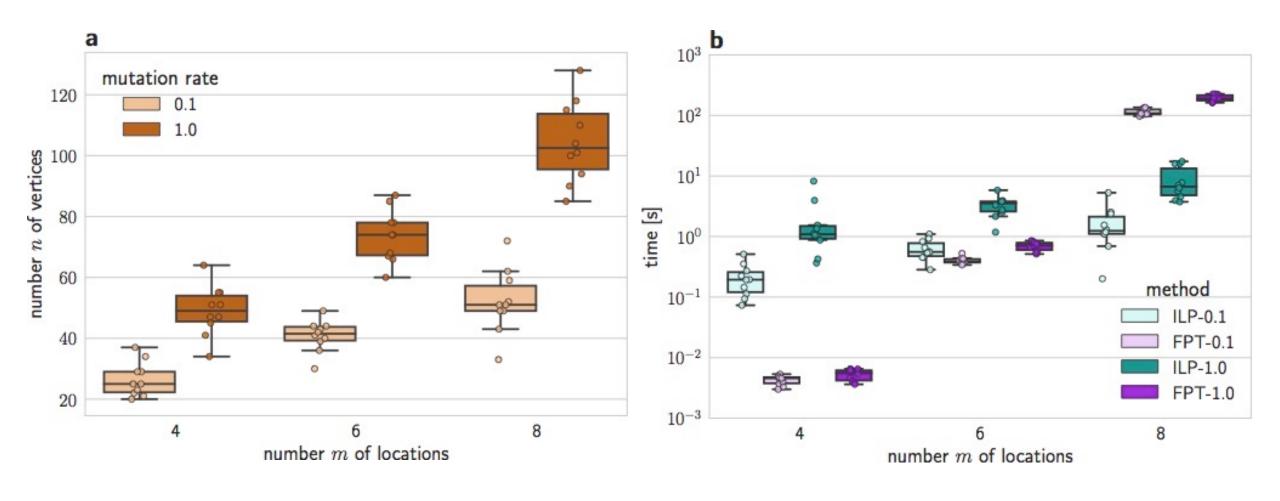
$$d_T(u,v) \ge d_{\hat{G}}(\operatorname{lca}_{\hat{G}}(u),\hat{\ell}(v))$$
 $\forall u,v \in V(T) \text{ such that } u \preceq_T v.$ (1)

$$\ell^*(v) = \begin{cases} \operatorname{LCA}_{\hat{G}}(r(T)), & \text{if } v = r(T), \\ \sigma(\ell^*(\pi(v)), \operatorname{LCA}_{\hat{G}}(v)), & \text{if } v \neq r(T), \end{cases}$$

where $\sigma(s,t) = s$ if s = t and otherwise $\sigma(s,t)$ is the unique child of s that lies on the path from s to t in \hat{G} .

Lemma: If (1) holds then ℓ^* is a minimum migration labeling consistent with \widehat{G} .

Simulations



Available on: https://github.com/elkebir-group/PMH-S