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Develop biologically meaningful optimization problems 
with corresponding efficient algorithms

that leverage auxiliary data to address challenges 
in species and tumor phylogeny estimation.

Dissertation Idea
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Completed Work at Prelim
Species phylogenies

Chapter 1. Christensen S., Molloy E.K., Vachaspati P. & Warnow T. (2018). OCTAL: Optimal 
Completion of Gene Trees in Polynomial Time. Algorithms for Molecular Biology. 

Chapter 2. Christensen S., Molloy E.K., Vachaspati P., Yammanuru A. & Warnow T. (2020). Non-
parametric correction of estimated gene trees using TRACTION. Algorithms for Molecular Biology.

Tumor phylogenies
Chapter 3. Christensen S., Leiserson M.D.M., & El-Kebir M. (2020). PhySigs: Phylogenetic 
Inference of Mutational Signature Dynamics. Pacific Symposium on Biocomputing.

Chapter 4. Christensen S., Kim J., Koyejo S., Chia N. & El-Kebir M. (2020). Detecting 
Evolutionary Patterns of Cancers using Consensus Trees. [Submitted to ECCB 2020].
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New Work Since Prelim

Tumor phylogenies
Chapter 3. Developed R package and visualization tool. 
Github: https://github.com/elkebir-group/PhySigs_R
Visualization App: https://physigs-tree-browser.herokuapp.com/

Chapter 4. Presented at ECCB and published in Bioinformatics. 
Christensen S. & El-Kebir M. (2020). Expanding Detection of Evolutionary Patterns of Cancers to 
Broader Biologically Realistic Conditions. Bioinformatics.  
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Overview of Talk
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• Species Evolution 

• Background 

• Contributions from Chapter 2

• Tumor Evolution 
• Background 

• Contributions from Chapter 4

• Conclusions



Species
Evolution



Species Tree

Species phylogenies: Background and current challenges 7

ACTGCACACCG … AGCAGCATCGTG
ACTGC–CCCCG … AGCAGC–TCGTG
AATGC–CCCCG … AGCAGC–TC–TG
–CTGCACACGG … A–TA–CACGGTG

Full Genome



Gene Trees

Species phylogenies: Background and current challenges 8

• Gene trees may differ from 
each other as well as from the 
species tree

• Causes of tree heterogeneity
• Incomplete lineage sorting (ILS)
• Gene duplication and loss (GDL)
• Horizontal gene transfer (HGT)



Gene and Species Trees Related

• Species tree 
parameterizes distribution 
over gene trees under 
models of gene evolution.

• Gene trees may likewise 
be used to recover a 
species tree.

9Species phylogenies: Background and current challenges 

[Pamilo and Nei, 1988; Rannala and Yang, 2003] 

Parameterize Estimate

Species Tree

Gene Trees



Challenges for Gene Tree Estimation

• Estimated gene trees can have 
missing species as well as         
low-confidence branches.
• Avian Phylogenomic Project average branch 

support below 30% [Jarvis et al., 2014]

• These challenges may impact 
downstream analysis.

• Idea: Can we improve gene tree 
estimation by using species trees?

Species phylogenies: Background and current challenges 10



Leading Gene Tree Correction Methods 
All Assume GDL

• ecceTERA [Jacox et al, 2016] 
• NOTUNG [Durand, 2006]
• ProfileNJ [Noutahi et at, 2016]
• TreeFix [Bansal et at, 2015]

• Gene tree correction methods just use the topology of a species 
tree to improve the gene tree.

• Integrative methods also incorporate sequencing data.

Species phylogenies: Background and current challenges 11



Our Non-Parametric Approach

Chapter 1: We add in missing species using a reference tree with OCTAL. 

[Christensen et al., Algorithms For Molecular Biology 2018]

Chapter 2: We add in missing species and correct low-support branches 

using a reference tree with TRACTION. 

[Christensen et al., Algorithms For Molecular Biology 2020]

Species phylogenies: Background and current challenges 12



Chapter 2: TRACTION
Christensen S., Molloy E.K., Vachaspati P., Yammanuru A. & Warnow T. (2020). Non- parametric 
correction of estimated gene trees using TRACTION. Algorithms for Molecular Biology.

13



Robinson-Foulds (RF) Distance

Given two trees on the same leaf set, the RF distance is the total 
number of unique bipartitions in each tree. 
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Species phylogenies: Addressing low-support branches



RF-OTRC Optimization Problem

15Species phylogenies: Addressing low-support branches



RF-OTRC Optimization Problem

Output
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Species phylogenies: Addressing low-support branches

RF distance between T and T’ is 8. 
This is optimal. 



TRACTION: Main Contributions

Theorem: TRACTION solves the RF-OTRC Problem in O(𝑛!.# log 𝑛) 
time where 𝑛 is the number of leaves in the reference tree.

Generalization to multi-label trees: We show a naïve generalization 
is possible, but can produce degenerate results. 

Empirical results: Simulation studies show some advantages over 
leading methods. We will show this here.    

17Species phylogenies: Addressing low-support branches



Questions for Simulation Study

• Can we improve estimated gene trees with estimated species trees?

• Which correction methods perform best and under what conditions? 

• How do model conditions impact absolute and relative performance? 

18Species phylogenies: Addressing low-support branches



TRACTION: Tree Correction Simulation Design
ILS only datasets

• 26 species per true gene tree
• 8,000 gene trees in total
• 2 levels of ILS; varying 

sequence lengths
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True Species Tree True Gene Trees Simulated 
Sequencing Data

Estimated
Gene Trees

HGT+ILS datasets
• 51 species per true gene tree
• 60,000 gene trees in total
• 2 levels of HGT; 3 different 

sequence lengths

Estimated Species Trees

Species phylogenies: Addressing low-support branches



Correct Low-Support Branches with 
Species Tree

Species phylogenies: Addressing low-support branches 20
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ILS-Only Results

21

All methods improve estimated gene trees, but NOTUNG and TRACTION improve the most.

Species phylogenies: Addressing low-support branches

Low Gene Tree Estimation Error High Gene Tree Estimation Error

Estimated Gene Tree
ecceTERA
TreeFix
ProfileNJ
TRACTION
NOTUNG

Correction Methods

10% gene tree heterogeneity



ILS+HGT Results

22

In many cases, correction methods reduce accuracy. 
Only TRACTION consistently maintains or improves accuracy. 

Species phylogenies: Addressing low-support branches

High Gene Tree Estimation Error

Estimated Gene Tree
ecceTERA
TreeFix
ProfileNJ
TRACTION
NOTUNG

Correction Methods

Low Gene Tree Estimation Error

ecceTERA is not shown because
it did not complete on this dataset

68% gene tree heterogeneity



Answers from Simulation Study

• Can we improve estimated gene trees with estimated species trees?
• Yes, in many cases. 

• Which correction methods perform best and under what conditions?
• NOTUNG and TRACTION consistently perform well
• Slight advantage to TRACTION under HGT+ILS 

• How do model conditions impact absolute and relative performance?
• All methods perform well on ILS-only condition where ILS is low to moderate
• NOTUNG and TRACTION performed best relative to other methods
• TRACTION consistently maintains or improves accuracy on HGT+ILS

23Species phylogenies: Addressing low-support branches



TRACTION: Future Directions
Explore other reference trees: We used species trees, but 
other types of reference trees should be tried. 

Explore other distance measures: We used RF distance, but 
other distances could be tried.

Measure impact on downstream analysis: The effect of gene 
tree correction on downstream tasks should be evaluated.

Continue to pursue multi-label trees: Other extensions of RF 
distance to multi-label tree have been proposed.  

24Species phylogenies: Addressing low-support branches



Tumor
Phylogenies



Evolution in Cancer
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ACTGCACACCG … AGCAGCATCGTG
ACTGC–CCCCG … AGCAGC–TCGTG
AATGC–CCCCG … AGCAGC–TC–TG
–CTGCACACGG … A–TA–CACGGTG
Clonal Evolution Theory of Cancer

[Nowell, 1976]



Phylogenetic Trees in Cancer

27

New mutation

Tumor clones

Founder mutation



Downstream Analysis Requires Accurate 
Tumor Phylogeny Inference

Identify treatment targets

Tumor phylogenies: Background and current challenges 28

Understand metastasis Find common patterns

Image from [Jamal-Hanjani et al., 2017]

Image from [Gundem et al., 2015]



Bulk Sequencing Adds New Challenge

Tumor phylogenies: Background and current challenges 29

… ATCGTTGCGCGCATGCTTGTAAGA … 

Only observe mutations and frequencies
across samples, not co-occurrence in cells.

Germline (~3 billion bp)
Sample 1 aligned read (~100 bp)
Sample 2 aligned read (~100 bp)



Perfect Phylogeny (PP) Mixture Problem

Tumor phylogenies: Background and current challenges 30

Corresponds 1-1

PPM Variants 
TrAp [Strino et al., 2013] 

PhyloSub [Jiao et al., 2014] 
AncesTree [El-Kebir et al., 2015]

CITUP [Malikic et al., 2015] 
BitPhylogeny [Yuan et al., 2015] 

LICHeE [Popic et al., 2015]
…



Challenge: Many Optimal Solutions

31Tumor phylogenies: Background and current challenges From [Qi et al., 2019]



Lung Cancer Patient: CRUK0037

32From [Jamal-Hanjani et al., NEJM 2017] Tumor phylogenies: Background and current challenges 

…
17 trees!



Current Approaches for 
Reducing Optimal Solution Space

Long-read sequencing (e.g., [Deshwar et al., 2015]) 

Able to obtain reads with millions of basepairs.
Mutations on the same read originate from a single cell.

Single-cell sequencing (e.g., [Jahn et al., 2015; Zafar et al., 2017; El-Kebir 2018; Malikic et al., 2019])

Must account for sequencing errors.
Mutations comprising single cell form a connected path.

Tumor phylogenies: Background and current challenges 33



Our Approach

Chapter 3: We reduce the solution space using mutational signatures 

with PhySigs. [Christensen et al., PSB 2020]

Tumor phylogenies: Background and current challenges 34



Chapter 3: We reduce the 

solution space using mutational 

signatures with PhySigs. 
[Christensen et al., PSB 2020]

Our Approach

Tumor phylogenies: Background and current challenges 35



Our Approach

Chapter 3: We reduce the solution space using mutational signatures 

with PhySigs. [Christensen et al., PSB 2020]

Chapter 4: We reduce the solution space using other patients’ bulk data 

with RECAP. [Christensen et al., ECCB 2020]

Tumor phylogenies: Background and current challenges 36



Chapter 4: RECAP
Christensen S., Kim J., Koyejo S., Chia N. & El-Kebir M. (2020). Detecting Evolutionary Patterns 
of Cancers using Consensus Trees. [Presented at ECCB 2020].
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Common Patterns in Patient Cohorts

38Tumor phylogenies: Reducing solution space using other patient tumorsImage from [Jamal-Hanjani et al., 2017]



Prior Work using Other Patient Data

REVOLVER [Caravagna et al., Nat. Methods 2018]

Hintra [Khakabimamaghani et al., Bioinformatics/ISMB 2019]

• Current methods do not account for patient subtypes, a 
phenomenon that has been documented in other contexts. 

• Current methods do not scale to large patient trees. 

• Current methods have trouble dealing with varying mutation sets as 
well as mutation clusters. 

39Tumor phylogenies: Reducing solution space using other patient tumors



RECAP Idea

To resolve ambiguities in patient data, 
we could leverage common patterns of evolution 

found in subtypes of patients. 

Tumor phylogenies: Reducing solution space using other patient tumors 40



Multiple Choice Consensus Tree (MCCT) Problem

41Tumor phylogenies: Reducing solution space using other patient tumors

Inputs

A set of possible 
trees for each 

patient

Parameter k
for desired
number of 

clusters

+



Multiple Choice Consensus Tree (MCCT) Problem

42Tumor phylogenies: Reducing solution space using other patient tumors

Inputs Output

A set of possible 
trees for each 

patient

Parameter k
for desired
number of 

clusters

+

Select a tree 𝑆! ∈ 𝒯! for each patient 𝑖,



Multiple Choice Consensus Tree (MCCT) Problem

43Tumor phylogenies: Reducing solution space using other patient tumors

Inputs Output

A set of possible 
trees for each 

patient

Parameter k
for desired
number of 

clusters

+

Select a tree 𝑆! ∈ 𝒯! for each patient 𝑖,

Assign each patient 𝑖 to a cluster 𝜎 𝑖 ∈ [𝑘],



Multiple Choice Consensus Tree (MCCT) Problem

44Tumor phylogenies: Reducing solution space using other patient tumors

Inputs Output

A set of possible 
trees for each 

patient

Parameter k
for desired
number of 

clusters

+

Select a tree 𝑆! ∈ 𝒯! for each patient 𝑖,

Assign each patient 𝑖 to a cluster 𝜎 𝑖 ∈ [𝑘],

Construct consensus tree 𝑅" for each cluster 𝑗,



Multiple Choice Consensus Tree (MCCT) Problem

45Tumor phylogenies: Reducing solution space using other patient tumors

Inputs Output

A set of possible 
trees for each 

patient

Parameter k
for desired
number of 

clusters

+

Select a tree 𝑆! ∈ 𝒯! for each patient 𝑖,

Assign each patient 𝑖 to a cluster 𝜎 𝑖 ∈ [𝑘],

Construct consensus tree 𝑅" for each cluster 𝑗,

Such that the sum of distances
from each selected tree 

to the corresponding consensus tree 
is minimized. 



Parent-Child (PC) Distance Function

46Tumor phylogenies: Reducing solution space using other patient tumors

Symmetric difference is 4.



RECAP: Main Contributions
Hardness: Proved MCCT NP-Hard via a reduction from 3-SAT and 

proposed gradient descent heuristic RECAP to use in practice.  

Addresses prior limitations: RECAP allows for different patient subtypes 
and scales to larger sets of mutations. 

Simulation performance: Encouraging results on simulated data where 
there are different underlying subtypes. 

Real Data performance: Uncover well-supported evolutionary 
trajectories in non-small cell lung cancer and breast cancer cohorts.

Tumor phylogenies: Reducing solution space using other patient tumors 47



RECAP recovers known cancer subtype 
based on evolutionary trajectories

48

• Khakabimamaghani et al. (2019) previously 
used HINTRA to analyze breast cancer dataset
• Manually split patients into four subtypes based on 

receptor status 
• In the HR+/HER2- subtype, found CDH1 commonly 

precedes PIK3CA. 

• RECAP finds subtype de novo in Cluster 7. 
• Consensus tree has CDH1 as parent of PIK3CA
• 87 out of 93 patients (93.5%) in Cluster 7 belong to 

the HR+/HER2- subtype. 
RECAP Cluster 7 Consensus Graph

Tumor phylogenies: Reducing solution space using other patient tumors



Handling Mutation Clusters

49Tumor phylogenies: Reducing solution space using other patient tumors

• Mutations with similar frequencies in 
each sample from same tumor are 
typically clustered

• Lack of signal to resolve ordering 
represents a kind of ambiguity

• Resolving the ordering of driver 
mutations important for understanding 
common evolutionary trajectories 

Tree from [Jamal-Hanjani et al., 2017]

Lung cancer patient CRUK0004



PC Optimal Cluster Expansion Problem

50

Tree T with mutation clusters Reference tree R

Inputs

Tumor phylogenies: Reducing solution space using other patient tumors

Expand clusters in 
tree T minimizing 
PC distance to R.



PC Optimal Cluster Expansion Problem
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Tree T with mutation clusters Reference tree R

Inputs Output

T′ expanding T

Tumor phylogenies: Reducing solution space using other patient tumors

𝐷#$(𝑅, 𝑇’) = 2



PC Optimal Cluster Expansion Problem
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Tree T with mutation clusters Reference tree R

Inputs Output

T′ expanding T

Tumor phylogenies: Reducing solution space using other patient tumors

𝐷#$(𝑅, 𝑇’) = 2

Theorem: Given a rooted tree R with no mutation clusters and a rooted tree T with at 
least one mutation cluster, calling our DP algorithm with

𝑂𝐶𝐸 𝑇, 𝑅 = max
%,'∈) * +

𝑓(𝑟 𝑇 , 𝑠, 𝑡)

finds an optimal value for the OCE problem. 



RECAP: Future Directions
Try other distance measures: We use parent-child distance but other 
measures, such as ancestor-descendent, can be explored.

Move beyond infinite sites assumption: We can explore measures of 
similarity that do not assume a mutation is gained once and not lost.

Consider other consensus graphs: This is useful for incorporating 
mutual exclusivity of driver mutations that occur in the same pathway. 

Incorporate into visualization: We could also support visualizing 
common evolutionary trajectories in our tool.  

Species phylogenies: Addressing missing data 53



Conclusions



Develop biologically meaningful optimization problems
RF-OTC, RF-OTRC, TCE, and MCCT

Returning to Dissertation Idea
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Develop biologically meaningful optimization problems
RF-OTC, RF-OTRC, TCE, and MCCT

with corresponding efficient algorithms
OCTAL, TRACTION, PhySigs, and RECAP

Returning to Dissertation Idea
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Develop biologically meaningful optimization problems
RF-OTC, RF-OTRC, TCE, and MCCT

with corresponding efficient algorithms
OCTAL, TRACTION, PhySigs, and RECAP

that leverage auxiliary data to address challenges 
Species tree, mutational signatures, and other patients

in species and tumor phylogeny estimation.

Returning to Dissertation Idea
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Looking Forward
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• Introduced four methods for improving phylogeny estimation
• Posed a biologically meaningful optimization problem
• Established computational complexity and conceived of approach 
• Implemented and benchmarked empirical performance 

• Several directions for future research
• Expanding to more realistic models of evolution
• Explore use of other graph theoretic objects
• Assess implications for downstream analysis
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