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Completed Work at Prelim

Species phylogenies

Chapter 1. Christensen S., Molloy E.K., Vachaspati P. & Warnow T. (2018). OCTAL: Optimal
Completion of Gene Trees in Polynomial Time. Algorithms for Molecular Biology.

Chapter 2. Christensen S., Molloy E.K., Vachaspati P., Yammanuru A. & Warnow T. (2020). Non-
parametric correction of estimated gene trees using TRACTION. Algorithms for Molecular Biology.

Tumor phylogenies

Chapter 3. Christensen S., Leiserson M.D.M., & El-Kebir M. (2020). PhySigs: Phylogenetic
Inference of Mutational Signature Dynamics. Pacific Symposium on Biocomputing.

Chapter 4. Christensen S., Kim J., Koyejo S., Chia N. & ElI-Kebir M. (2020). Detecting
Evolutionary Patterns of Cancers using Consensus Trees. [Submitted to ECCB 2020].



New Work Since Prelim

Tumor phylogenies

Chapter 3. Developed R package and visualization tool.
Github: https://github.com/elkebir-group/PhySigs_R
Visualization App: https://physigs-tree-browser.herokuapp.com/

Chapter 4. Presented at ECCB and published in Bioinformatics.

Christensen S. & El-Kebir M. (2020). Expanding Detection of Evolutionary Patterns of Cancers to
Broader Biologically Realistic Conditions. Bioinformatics.



Overview of Talk

» Species Evolution

« Background

 Contributions from Chapter 2

@@@@]

* Tumor Evolution [ .
Species

« Background

o/  \e 5
« Contributions from Chapter 4
[eé & O @}

 Conclusions Clones




Species
Evolution




(") ACTGCACACCG ...
x ACTGC-CCCCG ...
& AATGC-CCCCG ..

@©» —CTGCACACGG

Species Tree

AGCAGCATCGTG
AGCAGC-TCGTG
AGCAGC-TC-TG

. A—TA-CACGGTG

Full Genome

Species phylogenies: Background and current challenges




(Gene Trees

from
each other as well as from the
species tree

« Causes of tree heterogeneity
* Incomplete lineage sorting (ILS) A N [
 Gene duplication and loss (GDL) (@ /sl sl s

* Horizontal gene transfer (HGT) O PRSP .. R P
O (FRAFDA PR - P RPN P

| gene 1 | gene1000
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Gene and Species Trees Related

Species Tree

» Species tree
parameterizes distribution
over gene trees under

models of gene evolution. Pafamete/fize M x & ) ﬁimate

\H

Gene Trees

» Gene trees may likewise
be used to recover a
species tree. YN PHe® ®New

[Pamilo and Nei, 1988; Rannala and Yang, 2003]
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Challenges for Gene Tree Estimation

* Estimated gene trees can have
missing species as well as
branches.

* Avian Phylogenomic Project average branch
support below 30% [Jarvis et al., 2014]

* These challenges may impact
downstream analysis.

* |dea: Can we improve gene tree
estimation by ?

Species phylogenies: Background and current challenges

10



Leading Gene Tree Correction Methods
All Assume GDL

» ecceTERA [Jacox et al, 2016]

« NOTUNG [Durand, 2006]
 ProfileNJ [Noutahi et at, 2016]
* TreeFix [Bansal et at, 2015]

* Gene tree just use the topology of a species
tree to improve the gene tree.

also incorporate sequencing data.



Our Non-Parametric Approach

Chapter 1: We add in missing species using a reference tree with OCTAL.

[Christensen et al., Algorithms For Molecular Biology 2018]

Chapter 2: We add in missing species and correct low-support branches
using a reference tree with TRACTION.

[Christensen et al., Algorithms For Molecular Biology 2020]



Non-parametric correction of estimated
gene trees using TRACTION

Sarah Christensen®, Erin K. Molloy, Pranjal Vachaspati, Ananya Yammanuru and Tandy Warnow’

Chapter 2: TRACTION

Christensen S., Molloy E.K., Vachaspati P., Yammanuru A. & Warnow T. (2020). Non- parametric
correction of estimated gene trees using TRACTION. Algorithms for Molecular Biology.
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Robinson-Foulds (RF) Distance

Given two trees on the same leaf set, the RF distance is the total
number of unique bipartitions in each tree.
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RF-OTRC Optimization Problem

The Optimal Tree Refinement and Completion Problem
Input: An unrooted, singly-labeled, binary tree T on leaf
set S and an unrooted, singly-labeled tree t on R C .
Output: An unrooted, singly-labeled, binary tree 77 on S

with two key properties:
1 T’ contains all the leaves of S and is compatible with

t (i.e., T'|gr is a refinement of ¢) and
2 T’ minimizes the RF distance to T" among all binary

trees satisfying condition (1).

Species phylogenies: Addressing low-support branches
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RF-OTRC Optimization Problem

Inputs

Gene tree t on RCS

Species tree Ton S
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RF distance between T and T’ is 8.
This is optimal.



TRACTION: Main Contributions

Theorem: TRACTION solves the RF-OTRC Problem in O(n'° log n)
time where n is the number of leaves in the reference tree.

: We show a naive generalization
IS possible, but can produce degenerate results.

: Simulation studies show some advantages over
leading methods. We will show this here.



Questions for Simulation Study

« Can we with estimated species trees?
* Which correction methods perform best and ?

« How do model conditions impact ?



TRACTION: Tree Correction Simulation Design

datasets datasets
» 26 species per true gene tree * 51 species per true gene tree
« 8,000 gene trees in total * 60,000 gene trees in total
» 2 levels of ILS; varying 2 levels of HGT; 3 different
sequence lengths sequence lengths
True Species Tree True Gene Trees Seqslj:ennucliar;[sdData :j;i;n?:::s
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Correct Low-Support Branches with
Species Tree

Estimated gene tree t Low-support branch collapsed Revised gene tree t,
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ILS-Only Results

All methods improve estimated gene trees, but NOTUNG and TRACTION improve the most.

1.0 1.0 )
ﬁ 10% gene tree heterogeneity
0.8 0.8 Correction Methods
B NOTUNG
5 0.6 . 5 0.6 mmm TRACTION
= . AT I ProfileNJ
L M L )
o 0.4 ¢ o 0.4 I TreeFix
I ecceTERA
0.2 0.2 ‘ | I Estimated Gene Tree
0.0 0.0

[0, 0.2] (0.8, 1]
Low Gene Tree Estimation Error  High Gene Tree Estimation Error
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RF Error

ILS+HGT Results

In many cases, correction methods reduce accuracy.
Only TRACTION consistently maintains or improves accuracy.

1.0 1.0
j 68% gene tree heterogeneity
08 0.8 Correction Methods
. - B NOTUNG
0.6 ' 5 0.6 s I TRACTION
I I ProfileNJ
¢ 9 L — .
0.4 11 _{ o 0.4 -.- ¢ I TreeFix
2 ¢ I ecceTERA
0.2 U o2 * ¢ I Estimated Gene Tree
0.0 — L= ? 0.0 ecceTERA is not shown because
[0, 0.2) 0.8, 1] it did not complete on this dataset

Low Gene Tree Estimation Error  High Gene Tree Estimation Error
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Answers from Simulation Study

« Can we with estimated species trees?
* Yes, in many cases.

* Which correction methods perform best and ?
* NOTUNG and TRACTION consistently perform well
 Slight advantage to TRACTION under HGT+ILS

« How do model conditions impact ?

« All methods perform well on ILS-only condition where ILS is low to moderate
« NOTUNG and TRACTION performed best relative to other methods
« TRACTION consistently maintains or improves accuracy on HGT+ILS



TRACTION: Future Directions

: We used species trees, but
other types of reference trees should be tried.

: We used RF distance, but
other distances could be tried.

: The effect of gene
tree correction on downstream tasks should be evaluated.

: Other extensions of RF
distance to multi-label tree have been proposed.



Phylogenies
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Evolution in Cancer
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Clonal Evolution Theory of Cancer
[Nowell, 1976]



Phylogenetic Trees in Cancer

A <+— Founder mutation

A <+——— New mutation

Tumor clones



Downstream Analysis Requires Accurate
Tumor Phylogeny Inference

|dentify treatment targets
A

Understand metastasis

a A22 -1 A22 - 2 A22 -3

Image from [Gundem et al., 2015]

Tumor phylogenies: Background and current challenges
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Bulk Sequencing Adds New Challenge

2
| Germline (~3 billion bp)
Sample 1 aligned read (~100 bp)
——— = Sample 2 aligned read (~100 bp)
Q)
A
A - A A A (2

... ATCGTTGCGCGCATGCTTGTAAGA ...

Only observe and 0 0 0 0
across , hot co-occurrence in cells.




Perfect Phylogeny (PP) Mixture Problem
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Challenge: Many Optimal Solutions
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Lung Cancer Patient: CRUKOO37/

\@\w% N

17 trees!

From [Jamal-Hanjani et al., NEJM 2017]



Current Approaches for
Reducing Optimal Solution Space

(e.g., [Deshwar et al., 2015])
Able to obtain reads with millions of basepairs.
Mutations on the same read originate from a single cell.

(e.g., [Jahn et al., 2015; Zafar et al., 2017; El-Kebir 2018; Malikic et al., 2019))
Must account for sequencing errors.

Mutations comprising single cell form a connected path.



Our Approach

Chapter 3: We reduce the solution space using mutational signatures

with PhySigs. [Christensen et al., PSB 2020]



Our Approach

Chapter 3: We reduce the

CRUKO0025 (2 trees; 5 shifts)

solution sSpace using mutational | — . — -
Signature 1 2 4 5 6 13 1 Signature 1 2 4 5 6 B 1
Shift-1 0.14 0.03 0.56 0.22 0.04 0.00 0.0§ Shift-1 0.16 0.04 0.56 0.20 0.04 0.00 0.0f
Shift-2 056 025 0.00 0.06 002 011 0.0f Shift-2 056 025 0.00 0.06 002 0.11 0.0

signatures with PhySigs. E
[Christensen et al., PSB 2020] ®

Gene Type  HGVSP Effect  Oncogenic?
[KRAS  Missense pGI2C  Gain  Yes
(TPS3 Missense pY220C Loss  Yes
KRas, Fps3 0) [PTPRD. Splice  p.X1463_splice Likelyloss Likely
Shift-1 FGF4 Missense p.F1291 Unknown Unknown
MOB3B Missense p.Q56H Unknown Unknown
KRi RARA  Missense p.M406T Unknown Unknown
SOX17 Missense p.E34V Unknown Unknown
TLE4 Missense p.A380S Unknown Unknown
Package insta"ation YESI  Missense p.G67W Unknown Unknown
Shift-1
Shift-3 Shift-2 Shift-2

PhySigs is an R package that can be conveniently installed from GitHub.

install.packages("devtools")
devtools::install_github("elkebir-group/PhySigs_R")

Tumor phylogenies: Background and current challenges 35



Our Approach

Chapter 3: We reduce the solution space using mutational signatures

with PhySigs. [Christensen et al., PSB 2020]

Chapter 4: We reduce the solution space using other patients’ bulk data

with RECAP. [Christensen et al., ECCB 2020]



Chapter 4: RECAP

Christensen S., Kim J., Koyejo S., Chia N. & El-Kebir M. (2020). Detecting Evolutionary Patterns
of Cancers using Consensus Trees [Presented at ECCB 2020].
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Common Patterns in Patient Cohorts
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Image from [Jamal-Hanjani et al., 2017] Tumor phylogenies: Reducing solution space using other patient tumors
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Prior Work using Other Patient Data

REVOLVER [Caravagna et al., Nat. Methods 2018]
Hintra [Khakabimamaghani et al., Bioinformatics/ISMB 2019]

» Current methods do not account for , a
phenomenon that has been documented in other contexts.

« Current methods do not to large patient trees.

« Current methods have trouble dealing with varying as
well as



RECAP ldea

To resolve ambiguities in patient data,
we could leverage of evolution
found in of patients.



Multiple Choice Consensus Tree (MCCT) Problem

Inputs

Parameter k
for desired
number of

clusters

A set of possible
trees for each
patient

Tumor phylogenies: Reducing solution space using other patient tumors 41



Multiple Choice Consensus Tree (MCCT) Problem

Inputs Output

atree S; € 7; for each patient i,

Parameter k
for desired
number of

clusters

. =ie .. =ie

go

A set of possible
trees for each
patient

@o

Tumor phylogenies: Reducing solution space using other patient tumors 42



Multiple Choice Consensus Tree (MCCT) Problem

Inputs Output
) H 'H‘ / A Select a tree S; € 7; for each patient i,
Iﬂ Parameter k 3 o | A each patient i to a cluster (i) € [k],
| for desired 'ﬂ‘
I_ﬁ number of -
A clusters

Subtype k

Tn

A set of possible
trees for each
patient

Tumor phylogenies: Reducing solution space using other patient tumors 43



Multiple Choice Consensus Tree (MCCT) Problem

Inputs Output
©
A E 'H‘ Select a tree S; € 7; for each patient i,
— T ® Repeated
ﬁ 3 . evolution: ry'
| _‘5 H trajectories of . . . .
A | 3| e  divermutaions Assign each patient i to a cluster a(i) € [k],
£ 25 Parameter k T T
for ir .
r?urg;ri? tree R; for each cluster j,
AN j clusters .
ol w Repeated
o B 2 Sl
s ool T, g‘ : driver mutations
(?) e [l :

A set of possible
trees for each
patient
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Multiple Choice Consensus Tree (MCCT) Problem

Inputs Output
©
A E 'H‘ Select a tree S; € 7; for each patient i,
il -+~ T4 ; Repeated
ﬁ % X evolulio_nary'
I _‘5 N trajectories of . . . .
A | 3| e  divermutaions Assign each patient i to a cluster a(i) € [k],
Parameter k T M,
for ir .
ﬁ r?urg;ri? Construct consensus tree R; for each cluster j,
R s clusters
2L ° Such that the
r'j N 'ﬁ\ Rapested from each selected tree
) 2o ;% ST et to the corresponding consensus tree
: Bl & e is :
A set of possible 'H\ = . evoionary
: rajectories of
trees for each &S iﬁ_ig{;u_,?_‘_@:s
patient AA A Ry
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Parent-Child (PC) Distance Function

O
(@
(@,
E(T;) nE(T?) o o
E(T)\E(T) E(T2)\E(T1)
T; T

Symmetric difference is 4.

Tumor phylogenies: Reducing solution space using other patient tumors



RECAP: Main Contributions

: Proved MCCT NP-Hard via a reduction from 3-SAT and
proposed gradient descent heuristic RECAP to use in practice.

: RECAP allows for different patient subtypes
and scales to larger sets of mutations.

: Encouraging results on simulated data where
there are different underlying subtypes.

: Uncover well-supported evolutionary
trajectories in non-small cell lung cancer and breast cancer cohorts.



RECAP recovers known cancer subtype
based on evolutionary trajectories

« Khakabimamaghani et al. (2019) previously
used HINTRA to analyze breast cancer dataset

« Manually split patients into four subtypes based on
receptor status

* In the HR+/HER2- subtype, found CDH1 commonly
precedes PIK3CA.

« RECAP in Cluster 7.

» Consensus tree has CDH1 as parent of PIK3CA

« 87 out of 93 patients (93.5%) in Cluster 7 belong to
the HR+/HER2- subtype.

RECAP Cluster 7 Consensus Graph



Handling Mutation Clusters

» Mutations with in
each sample from same tumor are
typically clustered

 Lack of signal to resolve ordering
represents a kind of

of driver
mutations important for understanding
common evolutionary trajectories

Tree from [Jamal-Hanjani et al., 2017]

Lung cancer patient CRUKO004




PC Optimal Cluster Expansion Problem

Inputs

Tree T with mutation clusters

€

Reference tree R

(&)
O

O

clusters in
tree T minimizing
PC distance to R.



PC Optimal Cluster Expansion Problem

Inputs Output

Tree T with mutation clusters Reference tree R T’ expanding T

O ® O B 0O g
&) @

o Dpc(R,T") = 2 o



PC Optimal Cluster Expansion Problem

Inputs Output

Tree T with mutation clusters Reference tree R T’ expanding T

VA N\

Theorem: Given a rooted tree R with no mutation clusters and a rooted tree T with at
least one mutation cluster, calling our DP algorithm with

OCE(T,R) = . tergﬁalr)éﬂ) f(r(T),s,t)

finds an optimal value for the OCE problem.

g@

Tumor phylogenies: Reducing solution space using other patient tumors
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Dpc(R, T’) = 2
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RECAP: Future Directions

: We use parent-child distance but other
measures, such as ancestor-descendent, can be explored.

love ([ n: We can explore measures of
similarity that do not assume a mutation is gained once and not lost.

: This is useful for incorporating
mutual exclusivity of driver mutations that occur in the same pathway.

: We could also support visualizing
common evolutionary trajectories in our tool.



Conclusions
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Returning to Dissertation Idea

Develop biologically problems
RF-OTC, RF-OTRC, TCE, and MCCT
with corresponding
OCTAL, TRACTION, PhySigs, and RECAP
that leverage to address challenges
Species tree, mutational signatures, and other patients
In species and tumor



Looking Forwaro

* Introduced for improving phylogeny estimation
» Posed a biologically meaningful optimization problem
» Established computational complexity and conceived of approach
* Implemented and benchmarked empirical performance

» Several directions for
» Expanding to more of evolution
» Explore use of other graph theoretic objects
« Assess implications for
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