
CS 466 – Introduction to Bioinformatics
Lecture 9

Mohammed El-Kebir

September 23, 2020

Document history:

• 10/3/2018: Initial version

• 10/17/2018: Fixed incorrect running time of tree alignment

• 10/17/2018: Typos

• 10/25/2018: Typos

• 9/20/2019: Removed “Carrillo-Lipman” section, fixed various typos in proofs

• 9/18/2020: Several edits

• 9/23/2020: Typo in Equation 4, now stating that δ is a distance function in Theorem 2

Contents

1 Problem Statement 1

2 Tree and Star Alignments 2
2.1 Star Alignment . 3

1 Problem Statement

Let Σ be the alphabet. We are given k strings v1, . . . ,vk ∈ Σ∗. A multiple alignment
A = [ap,i] is defied as an k× ℓ matrix where ℓ ∈ {maxp∈[k]{|vp}, . . . ,

!k
p=1 |vp|} such that (i)

each entry ap,i is a character from the gap-extended alphabet Σ ∪ {−}, (ii) removal of the
gap characters from each row ap yields input string vp and (iii) there is no column j ∈ [ℓ]
consisting of only gap characters in A, i.e. ap,j = − for all p ∈ [k].

1

We consider the Sum-of-Pairs (SP) score SP(A), which uses a given pairwise scoring
function δ : (Σ ∪ {−}) × (Σ ∪ {−}) → R to score every column of an alignment A by
considering all pairs of input sequences. Specifically, SP(A) is defined as

SP(A) =
k"

p=1

k"

q=p+1

ℓ"

i=1

δ(ap,i, aq,i). (1)

We have the following two problems.

Problem 1. Weighted SP-Edit Distance Given strings v1, . . . ,vk ∈ Σ∗ and a scoring
function δ : (Σ ∪ {−}) × (Σ ∪ {−}) → R, find a multiple alignment A such that SP(A) is
minimum.

Problem 2. SP-Global Alignment Given strings v1, . . . ,vk ∈ Σ∗ and a scoring function
δ : (Σ ∪ {−})× (Σ ∪ {−}) → R, find a multiple alignment A such that SP(A) is maximum.

Observe that the two problems differ only in the direction of their objective functions,
minimization vs. maximization.

2 Tree and Star Alignments

In general, heuristics come with no hard, theoretical guarantees on their worst-case perfor-
mance. For instance, the greedy progressive alignment algorithm that we saw in class has no
such guarantees. In other words, we do not know how far off the cost of the returned solution
is from the optimal cost. In this section, we will describe a constant-factor approximation
algorithm that comes with theoretical guarantees on its performance. That is, the cost of a
returned solution is at most a constant factor more than the optimal cost.

Let v1, . . . ,vk ∈ Σ∗ be our input strings. Recall that D(vi,vj) is the optimal (weighted)
edit distance between vi, and vj. We start with the following key definition.

Definition 1. Let T be a tree with k nodes, where each node is labeled with a distinct string
from {v1, . . . ,vk}. Then, a multiple alignment A of v1, . . . ,vk is called consistent with T if
the induced pairwise alignment of vi, and vj has cost D(vi,vj) for each edge (vi,vj) of T .

The following theorem states that it is easy to compute an alignment that is consistent
with a given tree T .

Theorem 1 (Gusfield [1]). Let T be a tree whose k nodes are each labeled by a distinct string
from {v1, . . . ,vk}. We can compute an alignment A(T) of v1, . . . ,vk that is consistent with
T in O(k2n2) time.

Proof. Without loss of generality, we assume that the vertices have been arranged such
that {v1, . . . ,vi} induces a connected subtree T ′ of T for each i ∈ [k]. We will show that
the theorem holds, by proving inductively that adding each string vi while maintaining
consistency takes O(in2) time.

2

The base case i = 2 is trivial, amounting to a pairwise alignment of v1 and v2 that by
definition is consistent with tree T that connects the two vertices by a single edge. Computing
the optimal pairwise alignment takes O(in2) = O(2n2) = O(n2) time.

As for the step i > 2, by the induction hypothesis we are given a tree T ′ that is consistent
with strings v1,v2, . . . ,vi−1. Let vi be a string adjacent in T ′ to one of v1,v2, . . . ,vi−1. Let vj

be the vertex that is adjacent to vi in T ′. Let v̄j denote the gapped sequence corresponding to
vj in the multiple alignment A(T ′). We align v̄j and vi with the added rule that δ(−,−) = 0.
That is, two opposing gaps have a cost of 0.

Let v̄′
j and v̄i be the two resulting gapped sequences. If the optimal alignment does not

insert any new gaps into v̄j then we add v̄i to A(T ′). The result is a multiple alignment with
one more string, where the induced cost of v̄′

j and v̄i equals D(vj,vi) and where the induced
costs from the previous alignment remain unchanged. However, if the optimal alignment
inserted a new gap into v̄j between characters l and l+1, we insert a gap between columns l
and l+1 in each sequence of the original multiple alignment A(T ′). Observe that the induced
costs of the original alignment remain unchanged, whereas the induced alignment of v̄′

j and
v̄i has cost D(vj,vi). Thus, the new alignment is consistent with the tree T ′ extended by
the edge (vj,vi). As for the running time, observe that the given alignment A(T ′) composed
of (i− 1) sequences has a length of at most (i− 1)n (recall that length of pairwise alignment
of two sequences of length m and n is at most m + n). Thus, worst case, v̄j has length
(i− 1)n = O(in) while vi has length n. Thus, it takes O(in2) time to compute v̄′

j and v̄i.

The total running time is
!k−1

i=1 O(in2) = O(k2n2). Hence, we can compute an alignment
A(T) of v1, . . . ,vk that is consistent with T in O(k2n2) time.

2.1 Star Alignment

We begin with the following definition.

Definition 2. A cost function δ : (Σ∪{−})×(Σ∪{−}) → R satisfies the triangle inequality
if

δ(x, z) ≤ δ(x, y) + δ(y, z) (2)

for all x, y, z ∈ Σ ∪ {−}.

Recall that D(vi,vj) is the optimal (weighted) edit distance between vi and vj. We have
the following definition.

Definition 3. Given strings v1, . . . ,vk ∈ Σ∗, the center string vc (where c ∈ [k]) is the
input string that minimizes

!k
i=1 D(vc,vi). The center star is a star tree of k nodes with the

center node labeled by vc and each of the remaining k − 1 nodes labeled by a distinct string
from {v1, . . . ,vk} \ {vc}.

We use Theorem 1 to obtain an alignment Ac of v1, . . . ,vk consistent with the center star.
Let d(vi(Ac),vj(Ac)) denote the pairwise alignment cost of vi and vj induced by Ac. Clearly,
d(vi(Ac),vj(Ac)) ≥ D(vi,vj). We introduce the shorthand d(Ac) =

!
i<j d(vi(Ac),vj(Ac)).

3

Lemma 1. Let δ be a cost function that satisfies the triangle inequality and let vc be the
center string of a center star alignment Ac of input strings v1, . . . ,vk. Then, for any input
string vi and vj, it holds that

d(vi(Ac),vj(Ac)) ≤ d(vi(Ac),vc(Ac)) + d(vc(Ac),vj(Ac)) = D(vi,vc) +D(vc,vj). (3)

Proof. Consider any column of Ac. Let x, y and z be the characters in this column of gapped
sequences vi(Ac), vc(Ac) and vj(Ac), respectively. By the triangle inequality, we have that
δ(x, z) ≤ δ(x, y) + δ(y, z). Thus, d(vi(Ac),vj(Ac)) ≤ d(vi(Ac),vc(Ac)) + d(vc(Ac),vj(Ac)).
By definition of Ac, it follows that d(vi(Ac),vc(Ac)) + d(vc(Ac),vj(Ac)) = D(vi,vc) +
D(vc,vj).

We are now ready to state our theorem. Let δ : (Σ ∪ {−}) × (Σ ∪ {−}) → R be a
distance function, thus satisfying (i) identity of indiscernibles (i.e. δ(x, x) = 0 if and only if
x = x1, (ii) symmetry (δ(x, y) = δ(y, x)) and (iii) the triangle inequality (Definition 2). Let
A∗ be an optimal alignment of strings v1, . . . ,vk with cost d(A∗), and let Ac be an alignment
consistent with the center star with center string vc and cost d(Ac).

Theorem 2. d(Ac)/d(A
∗) ≤ 2(k − 1)/k < 2.

Proof. We start by defining

f(Ac) =
"

(i,j)∈[k]2 :
i ∕=j

d(vi(Ac),vj(Ac)) and f(A∗) =
"

(i,j)∈[k]2 :
i ∕=j

d(vi(A
∗),vj(A

∗)). (4)

Clearly, 2d(A∗) = f(A∗) and 2d(Ac) = f(Ac). Recalling that D(vi,vj) is the optimal
(weighted) edit distance between vi and vj, we have by Lemma 1 that

f(Ac) =
"

(i,j)∈[k]2 :
i ∕=j

d(vi(Ac),vj(Ac)) (5)

≤
"

(i,j)∈[k]2 :
i ∕=j

[d(vi(Ac),vc(Ac)) + d(vc(Ac),vj(Ac))] (6)

=
"

(i,j)∈[k]2 :
i ∕=j

[D(vi,vc) +D(vc,vj)]. (7)

Observe that for any fixed j, each of the terms D(vc,vj) and D(vj,vc) show up k− 1 times.
Furthermore, observe that D(vc,vj) = D(vj,vc). Thus, we have

f(Ac) ≤
k"

(i,j)∈[k]2 :
i ∕=j

[D(vi,vc) +D(vc,vj)] = 2(k − 1)
k"

j=1

D(vc,vj). (8)

1We only need the reverse direction, i.e. x = x implies δ(x, x) = 0.

4

From the other side, we have

f(A∗) =
"

(i,j)∈[k]2 :
i ∕=j

d(vi(A
∗),vj(A

∗)) (9)

≥
"

(i,j)∈[k]2 :
i ∕=j

D(vi,vj) (10)

=
k"

i=1

k"

j=1

D(vi,vj) (11)

Now, the crucial observation is that the sum
!k

i=1

!k
j=1 D(vi,vj) of the minimum costs of

all ordered pairs of strings equals summing the cost of k different stars, each centered around
one of the k input strings. We picked vc such that it was the star with smallest cost. Thus,
we have

f(A∗) ≥
k"

i=1

k"

j=1

D(vi,vj) (12)

≥ k
k"

j=1

D(vc,vj) (13)

Hence, we have

d(Ac)

d(A∗)
=

f(Ac)

f(A∗)
≤

(2k − 1)
!k

j=1 D(vc,vj)

k
!k

j=1 D(vc,vj)
=

2(k − 1)

k
< 2. (14)

References

[1] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, NY, USA, 1997.

5

