CS 466

Introduction to Bioinformatics
Lecture 5




Course Announcements

Instructor:

* Mohammed El-Kebir (melkebir)
e Office hours: Wednesdays, 3:15-4:15pm

TA:
* Mondays, 3-4pm
* Fridays, 9-10am

Homework 1: Due on Sept. 17 (11:59pm)




Global, Fitting and Local Alignment

Global Alighment problem: Given strings v € 2™
and w € X" and scoring function 6, find alignment
of v.and w with maximum score.
[Needleman-Wunsch algorithm]

Fitting Alignment problem: Given stringsv € X
and w € 2™ and scoring function 6, find an
alignment of v and a substring of w with maximum
global alignment score s™ among all global
alignments of v and all substrings of w

Local Alignment problem: Given strings v € 2™
and w € X" and scoring function §, find a substring
of v and a substring of w whose alignment has
maximum global alignment score s* among all
global alignments of all substrings of vand w
[Smith-Waterman algorithm]

Question: How to assess
resulting algorithms?




Time Complexity

Edit graph is a weighed, directed grid
graph G = (V, E) with source vertex
(0,0) and target vertex (m,n). Each
edge ((i,)), (k,1)) has weight
depending on direction.
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Alignment is a path from source (0, 0)
to target (m, n) in edit graph
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Time Complexity

Edit graph is a weighed, directed grid
graph G = (V, E) with source vertex
(0,0) and target vertex (m,n). Each
edge ((i,)), (k,1)) has weight
depending on direction.
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Question: Compute alignment faster
than O (mn) time? [subquadratic time]




Space Complexity

Size of DP tableis(m+ 1) X (n+ 1)

Thus, space complexity is O(mn)
[quadratic space]

Example:
To align a short read (m = 100) to
human genome (n = 3 - 10°), we need
300 GB memory.
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Size of DP tableis(m+ 1) X (n+ 1)

Thus, space complexity is O(mn)
[quadratic space]

Example:
To align a short read (m = 100) to
human genome (n = 3 - 10°), we need
300 GB memory.

Question: How long is an alignment?
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Space Complexity

Size of DP tableis(m+ 1) X (n+ 1)

Thus, space complexity is O(mn)
[quadratic space]

Example:
To align a short read (m = 100) to
human genome (n = 3 - 10°), we need
300 GB memory.

Question: How long is an alignment?

Question: Compute alignmentin O(m)
space? [linear space]




Outline

2. Space-efficient alighment
3. Subqguadratic time alignment

Reading:
* Jones and Pevzner. Chapters 7.1-7.4
* Lecture notes




Space Efficient Alignment

Computing s[i, j] requires access to:
sli—1,jl,s[i,j —1]and s[i — 1,j — 1]

p

, if¢=0and 5 =0,
s[i — 1, 7] + 6(vi, —), if i >0,
slt,7 — 1]+ 0(—, wj), if j > 0,
(s[i — 1,7 — 1] + (v, wj), ifi>0andj>0.

sli, 7] = max <
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Figure 7.2 Calculating an alignment score requires no more than 2n space for an
n x n alignment problem. Computing the alignment scores in each column requires
only the scores in the preceding column. We show here the dynamic programming
array-the data structure that holds the score at each vertex—instead of the graph.
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Space Efficient Alignment

Computing s[i, j] requires access to:
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slt,7 — 1]+ 0(—, wj), if 7 >0,
sli—1,5 — 1]+ 6(v;,w;), ifi>0and j> 0.

sli, 7] = max <

\

Thus it suffices to store only two columns to
compute optimal alighnment score s|m, n|,

i.e,2(m+1) ﬁn—@space.
\

m
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Figure 7.2 Calculating an alignment score requires no more than 2n space for an

n x n alignment problem. Computing the alignment scores in each column requires
only the scores in the preceding column. We show here the dynamic programming
array-the data structure that holds the score at each vertex—instead of the graph.
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Space Efficient Alignment

Computing s[i, j] requires access to:

sli—1,jl,s[i,j —1]and s[i — 1,j — 1]

(0, if i=0and j =0,
s[i — 1, 4] + 6(vi, —), if i >0,
slt,7 — 1]+ 0(—, wj), if j > 0,
sli—1,5 — 1]+ 6(v;,w;), ifi>0and j> 0.

sli, 7] = max <

\

Thus it suffices to store only two columns to
compute optimal alighnment score s|m, n|,

i.e., 2(m + 1) = 0(m) space.

Question: What if we want alignment itself?

O(m) sprce
O(V")\ b e

| prefix (5)

pre ex (|

—_——-
-

rre_-Fi’X (Wl)

Figure 7.2 Calculating an alignment score requires no more than 2n space for an
n x n alignment problem. Computing the alignment scores in each column requires
only the scores in the preceding column. We show here the dynamic programming
array-the data structure that holds the score at each vertex—instead of the graph.
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Space Efficient Alignment — First Attempt

* What if also want optimal alignment?
* Easy: keep best pointers as fill in table.

* No! Do not know which path to keep until computing
recurrence at each step.
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Space Efficient Alignment — First Attempt

* What if also want optimal alignment?
* Easy: keep best pointers as fill in table.

* No! Do not know which path to keep until computing
recurrence at each step.

\\ +5
N

Best score for column
might not be part of

best alignment!
Y M [Ny B B




Space Efficient Alignment — Second Attempt
[a,a'\ . n/Z

Alignment is a path from
source (0,0) to target (m,n)
in edit graph

Maximum weight path from
(0,0) to (m, n) passes
through (i*,n/2)

Question: Whatisi*?




Space Efficient Alignment — Second Attempt
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Space Efficient Alignment — Second Attempt
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area of the solid rectangles) decreases by a factor of 2 at every iteration. u




Linear-Space Sequence Alignment
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Figure 7.3 Space-efficient sequence alignment. The computational time (ie., the
area of the solid rectangles) decreases by a factor of 2 at every iteration.

Hirschberg(i, j, i’,}')
1. ifj'—j>1

i* € arg maxwt(i'"")
i<i''<i’

Report (i¥,j + %
Hirschberg(i,j,i*,j + %)

Hirschberg(i*,j + %, i',7")

Time:
area + area/2 + area/4 + ...
=area (1+%+%+%+..) gww—o*’f
<2 x area = O(mn) R seriey
Space: O(m) 4 e dva ki




Linear-Space Sequence Alignment

10,0} m2 m (0.0} m2

Hirschberg(i, j, i’,}')
1. ifj'—j>1

i* € arg maxwt(i'"")
Py

n

Hirschberg(i,j,i*,j + %)

Hirschberg(i*,j + %, i',7")

: - Time:

I _ area + area/2 + area/4 + ...
—area (L+%+%+%+..)
<2 x area = O(mn)

Space: O(m)

: . Question: How to reconstruct

n.m) nmp

alignment from reported vertices?

Figure 7.3 Space-efficient sequence alignment. The computational time (ie., the
area of the solid rectangles) decreases by a factor of 2 at every iteration.




Hirschberg Algorithm: Reversing Edges Necessary?

Max weight path from (0,0) to (m, n) through (i*,n/2)

i* = arg max{ prefix(i) + suffix(i) }

o<ism

J
Compute {prefix(i) | 0 < i < m}in O(mj) time and O(m)
space, by starting from (0,0) to (m, j) keeping only two
columns in memory. [single-source multiple destinations] ,




Hirschberg Algorithm: Reversing Edges Necessary?

Max weight path from (0,0) to (m, n) through (i*,n/2)

i* = arg max{ prefix(i) + suffix(i) }

o<ism

Compute {prefix(i) | 0 < i < m}in O(mj) time and O(m)
space, by starting from (0,0) to (m, j) keeping only two
columns in memory. [single-source multiple destinations]

Want: Compute {suffix(i) | 0 < i < m}in O(mj) time
and O(m) space

m

——

Kt

Welodt

Doing a longest path from each (i, j) to (m, n) (for all 0 < i < m) will not achieve desired running time!

Reversing edges enables single-source multiple destination computation in desired time and space bound!
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Hirschberg Algorithm: Reconstructing Alignment
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Hirschberg(i, j,i’,j')
1. ifj —j>1
2. i" € arg max wt(i)
0<ism
R N |
eport (i",j + )
J _])

Hirschberg(i,j, i*,j + >

Hirschberg(i*,j + ! 2_] i)

Problem: Given reported vertices and

scores {(ip, 0, Sg), ..., (i, M, S},
find intermediary vertices.

Transposing matrix does not help,
because gaps could occur in both
input sequences (and there might be
multiple opt. alignments)




Linear Space Alignment — The Hirschberg Algorithm

Programming G. Manacher
Techniques Editor

A Linear Space
Algorithm for

Computing Maximal
Common Subsequences

D.S. Hirschberg
Princeton University

Dan Hirschberg

Professor of Computer Science & EECS
UC Irvine Senate Parliamentarian




Outline

3. Subqguadratic time alignment

~—

Reading:
* Jones and Pevzner. Chapters 7.1-7.4
* Lecture notes




Banded Alignment

Constraint path to band of width k
around diagonal

Running time: O(nk)

Gives a good approximation of
highly identical sequences

Y v § fan il

Constrain traceback to band of DP matrix (penalize big gaps)
Figure source: http://jinome.stanford.edu/stat366/pdfs/stat366_win0607_lecture04.pdf -




Banded Alignment

Constraint path to band of width k
around diagonal

Running time: O(nk)

Gives a good approximation of
highly identical sequences

Question: How to change
recurrence to accomplish this?

Constrain traceback to band of DP matrix (penalize big gaps)
Figure source: http://jinome.stanford.edu/stat366/pdfs/stat366_win0607_lecture04.pdf 5g




ﬁilock AIignmenD

Divide input sequences into blocks of length ¢t

Vt+1’ see) Vzt ees Vm't+1’ sesy Vm

< >

ya

Wt+1’ seey W2t ees Wn't+1’ sesy Wn




Block Alignment

Divide input sequences into blocks of length ¢t

Vm_t+1’ sesy Vm

Wn_t+1’ sesy Wn

Require that paths in edit graph pass
through corners of blocks

®

Figure 7.4 Two paths in a 40 x 40 grid partitioned into 16 subgrids of size 10 x 10.
The black path (a) is a block path, while the gray path (b) is not.
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Block Alignment

Divide input sequences into blocks of length ¢t

Vm_t+1’ sesy Vm

Wn_t+1’ sesy Wn

Require that paths in edit graph pass
through corners of blocks

if i =0and 5 =0,
if ¢ > 0,
if 5 >0,
if 2 >0 and 5 > 0.

sli, 7= max <

0= L] = tand ﬁ(l']) 19 frebs Seeiis allgnment Figure 7.4 Two paths in a 40 x 40 grid partitioned into 16 subgrids of size 10 x 10.
between bIOCk l Of V a nd bIOCk] Of A"\ The black path (a) is a block path, while the gray path (b) is not.
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Block Alignment — First Attempt: Pre-compute B(i, j)

0<ij<n/tandf(i,j)is maxscore alignment between block i of vand block j of w
t 2t nt

0

if 1 =0 and 5 =0,
if ¢ > 0,
if 7 > 0,
if 2 >0 and 5 > 0.




Block Alignment — First Attempt: Pre-compute B(i, j)

0<ij<n/tandf(i,j)is maxscore alignment between block i of vand block j of w
2t nt

(0, if i =0 and j =0,
sli —1,7] — o, if i > 0,
sli,j—1] — o, if § >0,
| s[i — 1,7 — 1]+ B(3,5), ifi>0andj>0.

Question:
How much time to compute al(B (i, j) 2
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Block Alignment — First Attempt: Pre-compute B(i, j)

0<ij<n/tandf(i,j)is maxscore alignment between block i of vand block j of w

t 2t
(0, if i =0and j =0,
sli —1,7] — o, if i > 0,

sli,j— 1] — o, if >0,

s[i — 1,5 — 1]+ B(i,4), ifi>0andj>0.

Question:
How much time to compute all S(i,j)?

Computing B (i, j) takes O(t?) time

There are n/t X n/t values B(i, j)

_— q_uaw((&"ﬁi_‘

Total: O (/%/)(E/X)Z/)zé(@rﬁe "




Block Alignment — Four Russians Technique

L

'@

Pre-comp
e

B,

An* Lo

Pre-compute and store all max

B CNCE

Algorithm: @ fW‘Q’* aﬂ) VWWS

1. Precompute S[v',w'] where
v ,w ext

2. Compute block alignment
between v and w using S

sli, j| = max <

z—lﬂ—a
7’7.] o 1] — 0,
Z o 17] T 1] +S[U(Z)a

max  Weight alignments SV,

ﬂ gfvmpalrs (v',w") of Iengtl@trmgs

)e st xgt

w(7)];

w'] of all

if i =0and 7 =0,
if 7 > 0,
if 5 > 0,
if 2 >0 and 57 > 0.
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Block Alignment — Four Russians Technique

Algorithm:

1. Precompute S[v',w'] where
v ,w ext

2. Compute block alignment
between v and w using S

Pre-comp B,

—— /

Pre-compute and store all max
weight alignments S[v', w'] of all
pairs (v',w') of length t strings

Question: How to choose t for DNA?

2] =
ifi:OandiO,
if 2+ > 0,
if 7 > 0,

)], if¢>0andj>0.




Block Alignment — Four Russians Technique

/ ] \Q\uestion: How to choose t for DNA? < —= 5417; C .3
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Fastest Subquadratic Alignment™® Algorithm
/@ WM.(«,L) ;’4-..'7 9y a- Ae e,

/ it

./ O(m°/logn

JOURNAL OF COMPUTER AND SYSTEM semnces 20, 18~31 .(1980) .

A Faster Algorithm Computing String Edit Distances®

WirLiam J. MASEK

Barely subquadratic!

MIT Laboratory for Computer Science, Cambridge, Mostachusetis 02139
AND

MicHAEL S. PATERSON Want: O(nz_e) time

School of Computer Science, University of Warwick, Coventry, Warwicks, United Kingdom Where € > O
Received September 25, 1978; revised August 6, 1979

V\L/[w) n < slower ’H’Lm O[MZ%)

Eoy o~y £26
*for edit distance 3o




Fastest Subquadratic Alignment™® Algorithm

JOURNAL OF COMPUTER AND SYSTEM &eIRNCES 20, 18-31.(1980) .

Edit distance in
0(n*/logn) time

A Faster Algorithm Computing String Edit Distances™

WirLiam J. MASEK

Barely subquadratic!

MIT Laboratory for Computer Science, Cambridge, Masrachusetts 02139

AND

MiCHAEL S. PATERSON . 2— '
! Want: O(n“"¢%) time
School of Computer Science, University of Warwick, Coventry, Warwicks, United Kingdom Where E > O

Received September 25, 1978; revised August 6, 1979

Question: Is n%~¢in O(nz/log n) forany € > 07? Z(_,c(u/& edes

*for edit distance 40



Hardness Result for Edit Distance [STOC 2015]

Edit Distance Cannot Be Computed
in &trongly Subquadratic Tim O(n%%) time where € >0

(unless - 1S aj,e)

Arturs Backurs* Piotr Indyk!
MIT MIT

Abstract

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the
minimum number of insertions, deletions or substitutions of symbols needed to transform one
string into another. The problem of computing the edit distance between two strings is a
classical computational task, with a well-known algorithm based on dynamic programming.
Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for
the problem of computing edit distance might be tight. Specifically, we show that, if the edit
distance can be computed in time Q{n® %) for some constant 4 > 0, then the satisfiability
of conjunctive normal form formulas with N variables and M clauses can be solved in time
MOM201=4N for a constant € > 0. The latter result would violate the Strong Ezponential Time
Hypothesis, which postulates that such algorithms do not exist.




BRAINIAC

For 40 years, computer scientists 1 biology n does not go to infinity 2]
looked for a solution that doesn’t .oy couena i e, 77 T A e —"

]
eXlSt [1] I recently read a "brainiac” column in the Boston Globe titled "For 40 years,
computer scientists looked for a solution that doesn’t exist” that caused me
to facepalm so violently I now have pain in my right knee.

SHUTTERSTOCK

By Kevin Hartnett | GLOBE CORRESPONDENT AUGUST 10, 2015

For 40 years, computer scientists have tried in vain to find a faster way to do an important [1] Boston G |O be AUg 10. 2015
’ ’

calculation known as “edit distance.” Thanks to groundbreaking work from two researchers at
MIT, they now know the reason they’ve continually failed is because a faster method is actually

[2] Bits of DNA Blog, Lior Pachter
42

impossible to create.



Take Home Messages

1. Global alignment in O(mn) time and O(m) space
* Hirschberg algorithm

2. Block alighment can be done in subquadratic time
* Four Russians Technique: O(n?/logn) time

3. Global alighment cannot be done in O(n“~¢) time under SETH

Reading:
* Jones and Pevzner. Chapters 7.1-7.4
* Lecture notes




