
CS 466 – Introduction to Bioinformatics – Lecture 2

Mohammed El-Kebir

August 28, 2020

Document history:

• 9/5/2018: Fixed typo in Section 1.4, O(4n/n) should have been O(4n/
√
n).

• 9/5/2018: Included analysis of naive fitting alignment algorithm.

• 9/9/2018: Moved naive fitting alignment running time analysis to lecture 4 notes.

• 8/30/2019: Minor changes in Section 1.2.

Contents

1 Big Oh Notation 1
1.1 What is O(n!)? . 1
1.2 What is O(log(n!))? . 2
1.3 What is O(

!
n
k

"
) where k = O(1)? . 2

1.4 What is O(
!
2n
n

"
)? . 3

1 Big Oh Notation

Let f, g : N≥0 → R≥0. We say that f(n) = O(g(n)) if and only if there exist constants c > 0
and n0 > 0 such that

f(n) ≤ c · g(n), for all n ≥ n0. (1)

1.1 What is O(n!)?

Recall that n! =
#n

i=1 i. If we multiply this out, the largest term that will apear will be nn.
Thus, n! = O(nn) might be a good guess. In other words, we claim that there exist constants
c, n0 > 0 such that n! ≤ cnn. Pick c = 1 and n0 = 1. The claim now becomes n! ≥ nn for all
integers n ≥ 1. We proof this by induction on n.

• Base case: n = 1. It follows that 1! = 1 ≤ 11 = 1.

1

• Step: n > 1. The induction hypothesis1 is that (n− 1)! = (n− 1)n−1. We thus have

n! = n(n− 1)! (2)

= n(n− 1)n−1 (3)

< nnn−1 (4)

= nn. (5)

Note that (3) follows from the induction hypothesis.

Alternatively, we can use Stirling’s approximation, which is defined as

n! ≈
√
2πn

$n
e

%n

. (6)

Simple algebra yields

n! ≈
√
2πn

$n
e

%n

=
√
2π

√
n

exp(n)
nn. (7)

Using that
√
n < exp(n) for all n > 0, we obtain

√
2π

√
n

exp(n)
nn <

√
2πnn = O(nn). (8)

We have that n! = O(nn), which can be rewritten as O(2n logn). Note that O(2n) ⊂
O(2n logn).

1.2 What is O(log(n!))?

Left as an exercise. Hint: use Stirling’s approximation, or try to compute an upper bound
directly.

1.3 What is O(
!
n
k

"
) where k = O(1)?

This expression arises when we have nested for loops. For instance, the running of the pseudo
code below is O(

!
n
2

"
).

for i in {1, ..., n}

for j in {i+1, ..., n}

Constant time computation;

Recall that
!
n
k

"
= n!

(n−k)!k!
. Thus, in the above case we have that O(

!
n
2

"
= O(n(n−1)/2) =

O(n2). Can we generalize this to arbitrary constant k (e.g. a k-nested for loop)?

&
n

k

'
=

n!

(n− k)!k!
=

1

k!

n!

(n− k)!
(9)

1Do not forget to state the induction hypothesis!

2

Since k = O(1), we have that 1
k!
= O(1), yielding

&
n

k

'
= O(n!/(n− k)!). (10)

Observe that n!/(n− k)! = n(n− 1) . . . (n− k + 1). We can rewrite this as

n(n− 1) . . . (n− k + 1) = nk · n− 1

n
. . .

n− k + 1

n
(11)

= nk

&
1

&
1− 1

n

'
· · ·

&
1− k

n

''
. (12)

Now for constant k, we have that limn→∞
!
1
!
1− 1

n

"
· · ·

!
1− k

n

""
= 1. Hence,

!
n
k

"
= O(nk)

for constant k.

1.4 What is O(
!
2n
n

"
)?

What if k = O(n)? We have seen this before. For instance, the expression
!
2n
n

"
arises when

computing the number of source-to-sink paths in the Manhattan Tourist Problem given a
square n× n grid. Can we simplify this equation?

Using that
!
n
k

"
= n!

(n−k)!k!
, we have

&
2n

n

'
=

(2n)!

n!n!
=

(2n)!

(n!)2
. (13)

We now use Stirling’s approximation, yielding

(2n)!

(n!)2
≈

√
2π2n

!
2n
e

"2n
(√

2πn
!
n
e

"n)2 (14)

=

√
2 ·

√
2πn · (2n)2n/e2n

2πn · n2n/e2n
(15)

=

√
2 · 4n · n2n

√
2πn · n2n

(16)

= 4n/
√
πn. (17)

Thus,
!
2n
n

"
= O(4n/

√
n).

3

