CS 466 Introduction to Bioinformatics Lecture 17

Mohammed El-Kebir

October 23, 2020

Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

• Lecture notes

Maximum Parsimony

Small Maximum Parsimony Phylogeny Problem: Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of Twith minimum parsimony score.

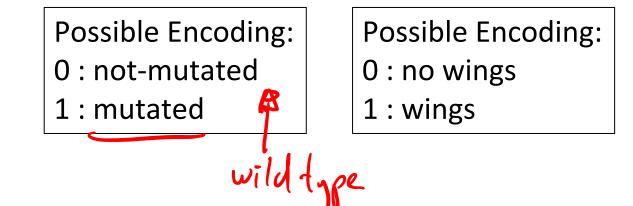
Large Maximum Parsimony Phylogeny Problem:

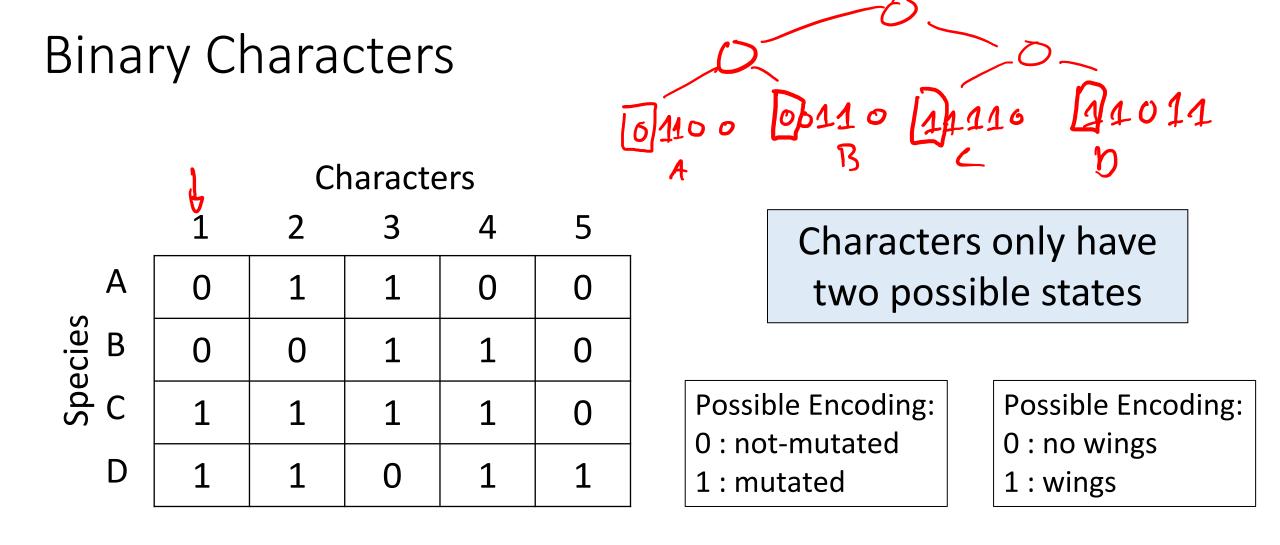
Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

Binary Characters

Matrix A

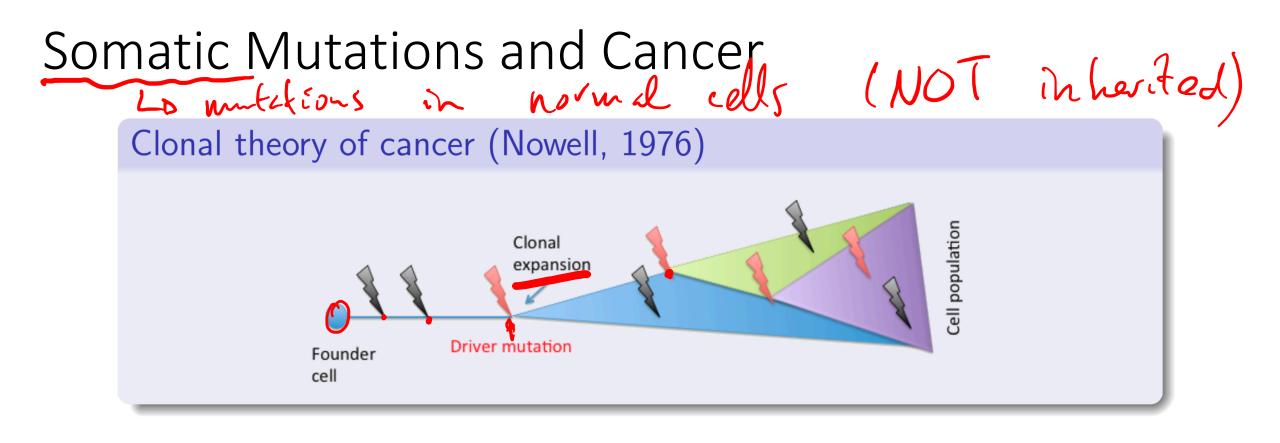
Characters only have two possible states





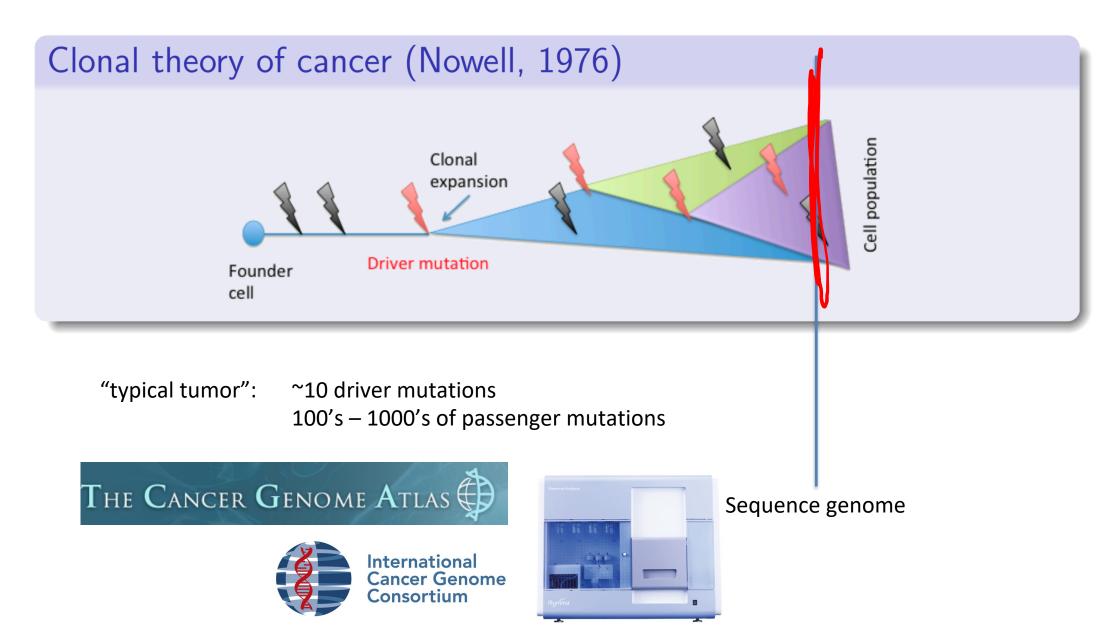
Question: Given *n* binary characters, what is the smallest parsimony score?

N

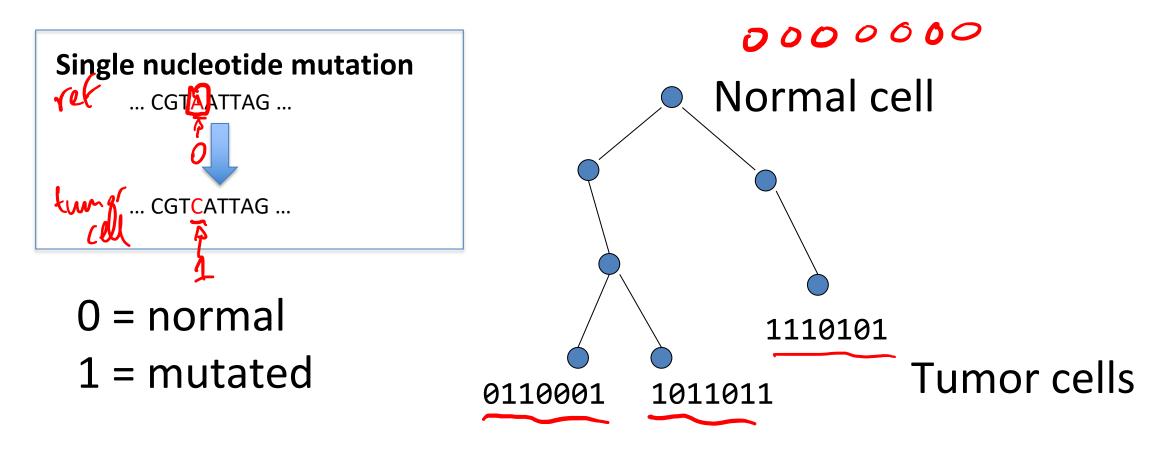


"typical tumor": ~10 driver mutations 100's – 1000's of passenger mutations

Somatic Mutations and Cancer

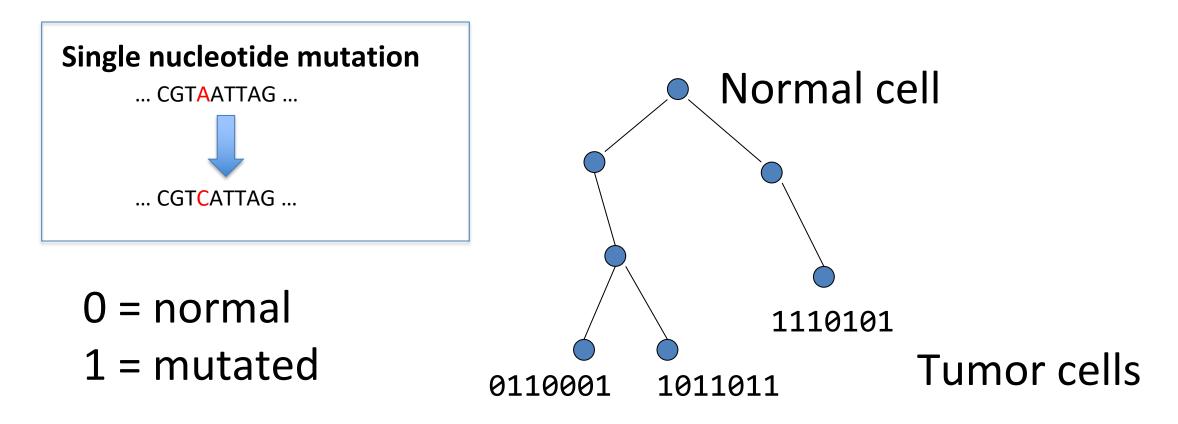


Progression of Somatic Mutations



Root is the normal, founder cell and leaves are cells in tumor.

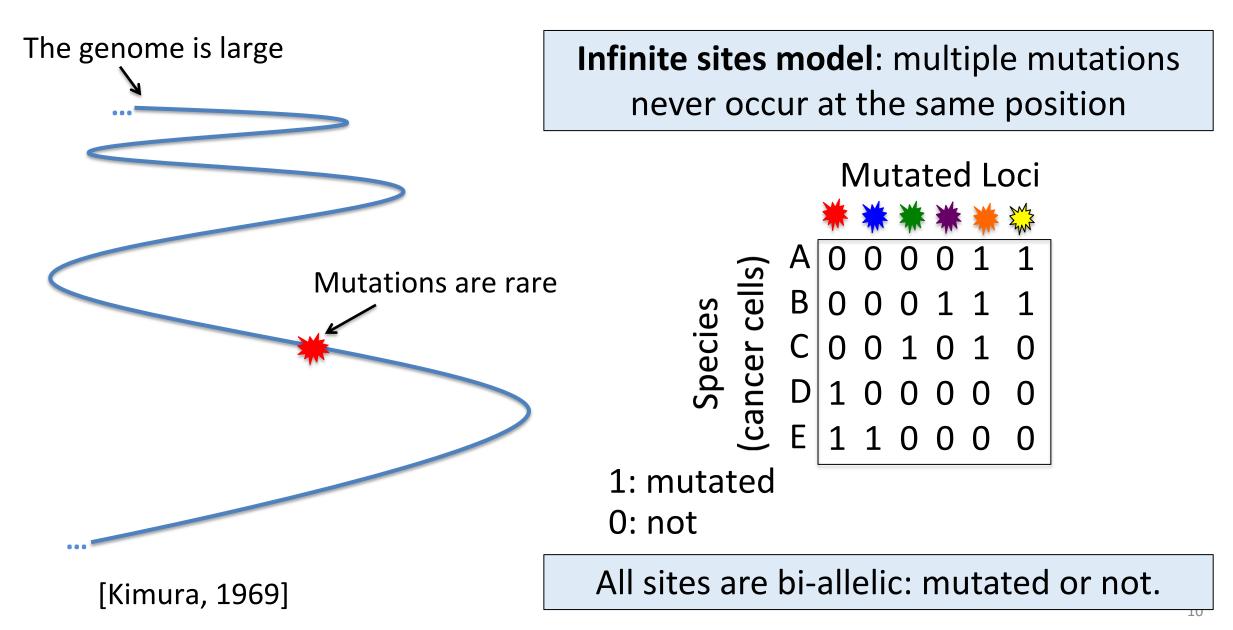
Progression of Somatic Mutations



Root is the normal, founder cell and leaves are cells in tumor.

Infinite sites assumption: each locus mutates only once.

Infinite Sites Model = Two-state Perfect Phylogeny



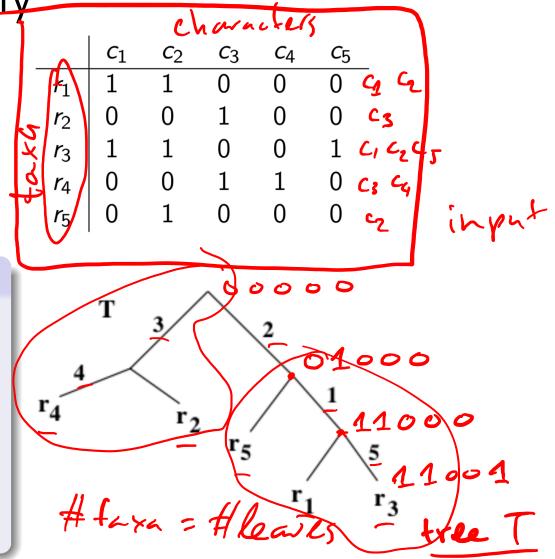
Two-state Perfect Phylogeny

- Matrix $M \in \{0, 1\}^{n \times m}$ has n taxa and m characters
 - Taxon f has state 1 for character c
 ⇔ f possesses character c

Definition

A perfect phylogeny for M is a rooted tree T with n leaves such that:

- . 2 Each character labels only one edge
- Character possessed by a taxon are on unique path to root



Root node is all zero ancestor

Two-state Perfect Phylogeny Problem

Input:

Matrix
$$M \in \{0,1\}^{n imes m}$$
 has n taxa and m characters

Taxon f has state 1 for character c
 ⇔ f possesses character c

	<i>c</i> ₁	<i>c</i> ₂	<i>C</i> 3	<i>C</i> 4	<i>C</i> 5
r_1	1	1	0	0	0
<i>r</i> ₂	0	0	1	0	0
r_3	1	1	0	0	1
<i>r</i> 4	0	0	1	1	0
<i>r</i> 5	0	1 0 1 0 1	0	0	0



Try it yourself!

B

Only one of these matrices can be used to build a perfect phylogeny.

(1) As a group, decide on an approach to try to determine which one is which.

7/c2)

Characters

()

()

0

0

В

(2) Try out your approach to see if you can construct the tree.

()

(3) What did you learn from your attempt?

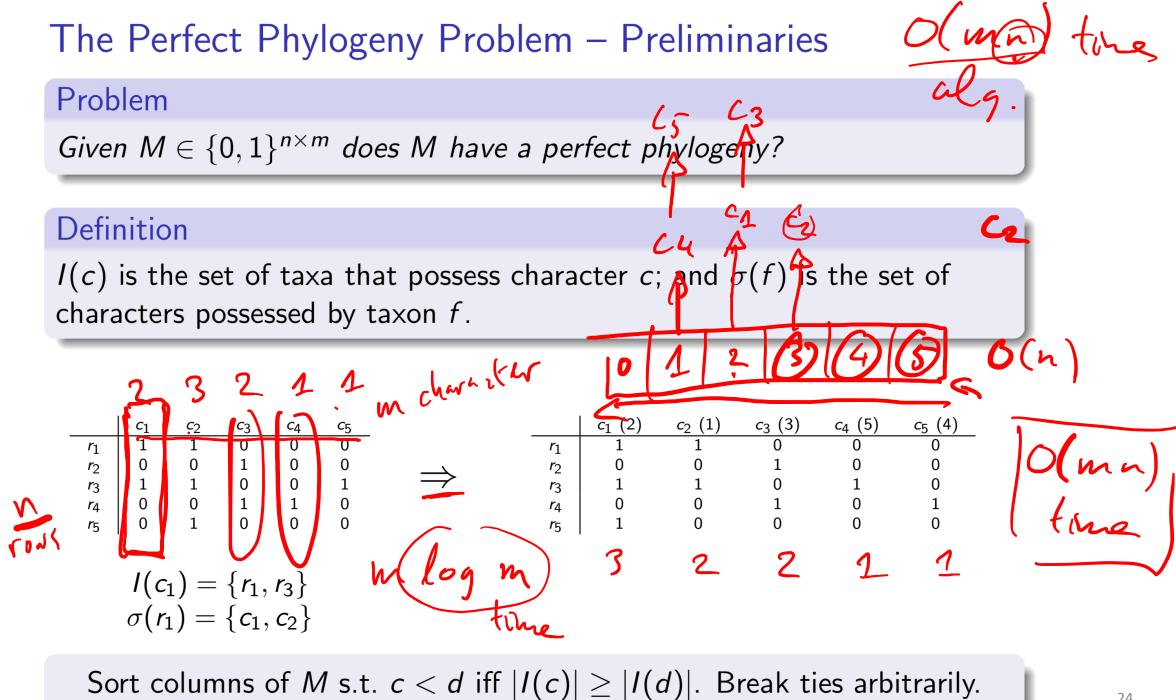
Characters

 $C_3 C_4$

Thm, Matrix B has a two-state p.p. it and only it B B conflict fræ. Two naive algoriths for checking conflict free proper O (mn) D bode at all 3×2 submatrices ime O(n³ m²) time Cloch at all pairs of columns O(nm²) a for each pair scan through rows O(n) 16

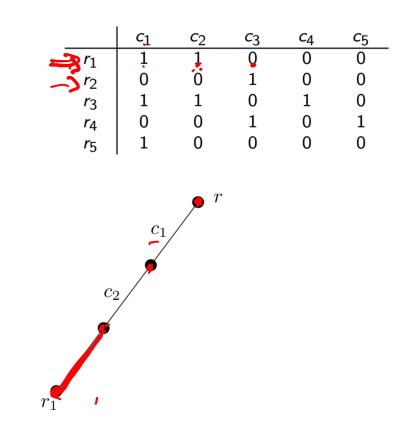
Lemma (Shared prefix property).
(Pre: B is "sorted")
Let d be the rightmost edung in B
prosessed by two taxa E and g.
Then, lif no pair of columns of B conflict,
E and g must be identical from column
2 to d.

$$\rightarrow$$
 F e 1. A
 \rightarrow g 6 g. 2



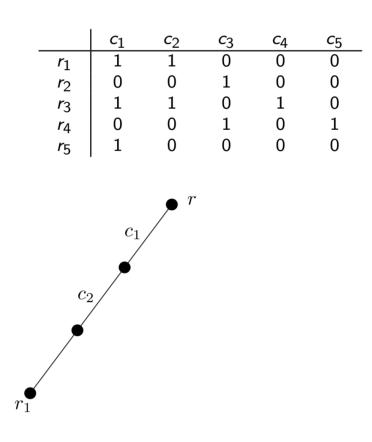
- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$

c < d iff $|I(c)| \geq |I(d)|$



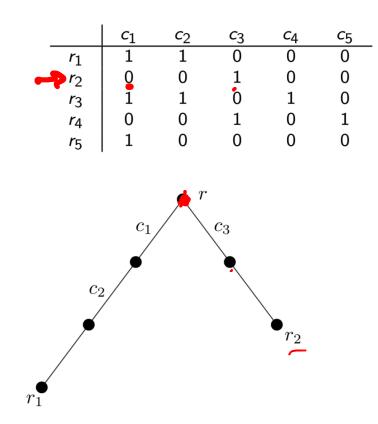
- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters σ(i + 1)
 - **\star** Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$

c < d iff $|I(c)| \geq |I(d)|$

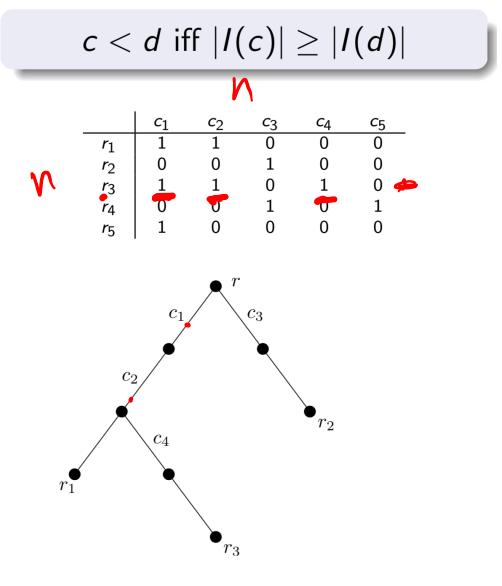


- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters σ(i + 1)
 - **\star** Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

c < d iff $|I(c)| \geq |I(d)|$

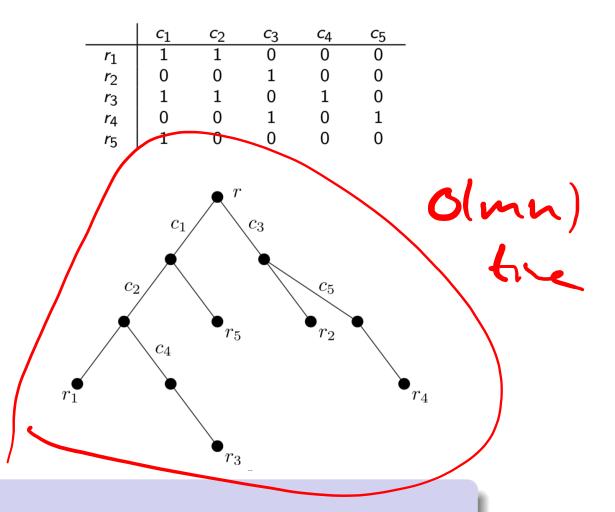


- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters σ(i + 1)
 - **\star** Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$



- Consider rows of *M* iteratively
 - T_i is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters σ(i + 1)
 - **\star** Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

c < d iff $|I(c)| \ge |I(d)|$



Lemma

Let $M_i \in 0, 1^{i \times m}$ be a submatrix of M. If M is conflict-free then T_i is a perfect phylogeny for M_i .

Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

• Lecture notes

Integer Characters Surry characters h=2 **N** Characters Characters have **k** Α possible states Species O B n. (h.1) h=2: n(2-1) = n

Question: Given *n* integer characters with *k* states, what is the smallest parsimony score?

Infinite Alleles Model = Multi-state Perfect Phylogeny VS. Turinte Sites Model (h-2) Infinite alleles model:

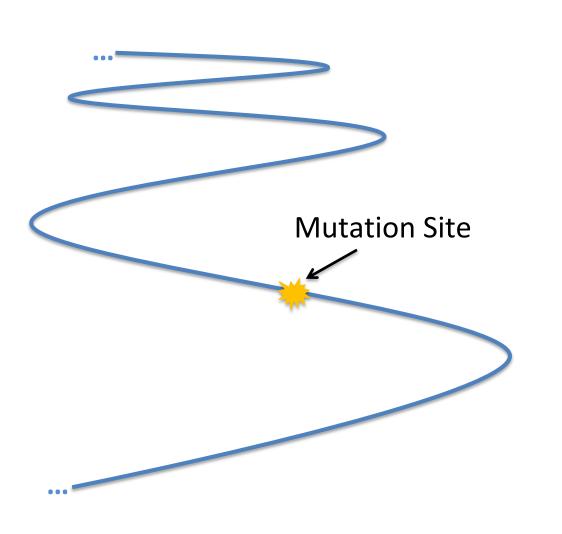
Mutation Site

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
 - So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Time Characters have integer states

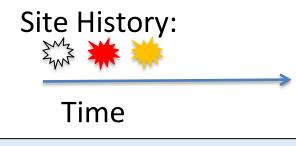
Site History:

Infinite Alleles Model = Multi-state Perfect Phylogeny



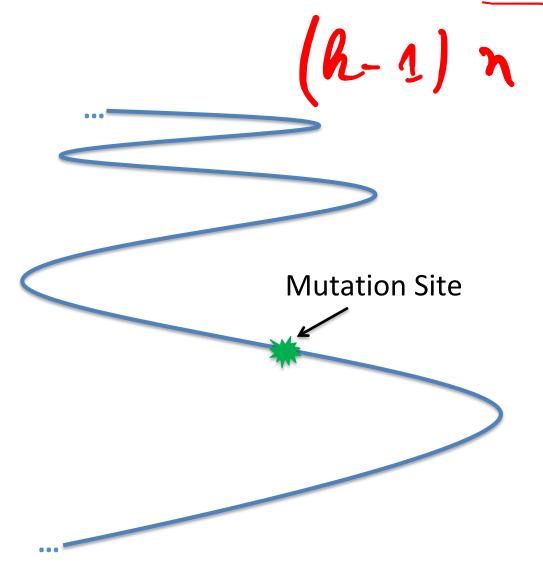
Infinite alleles model:

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.



Characters have integer states

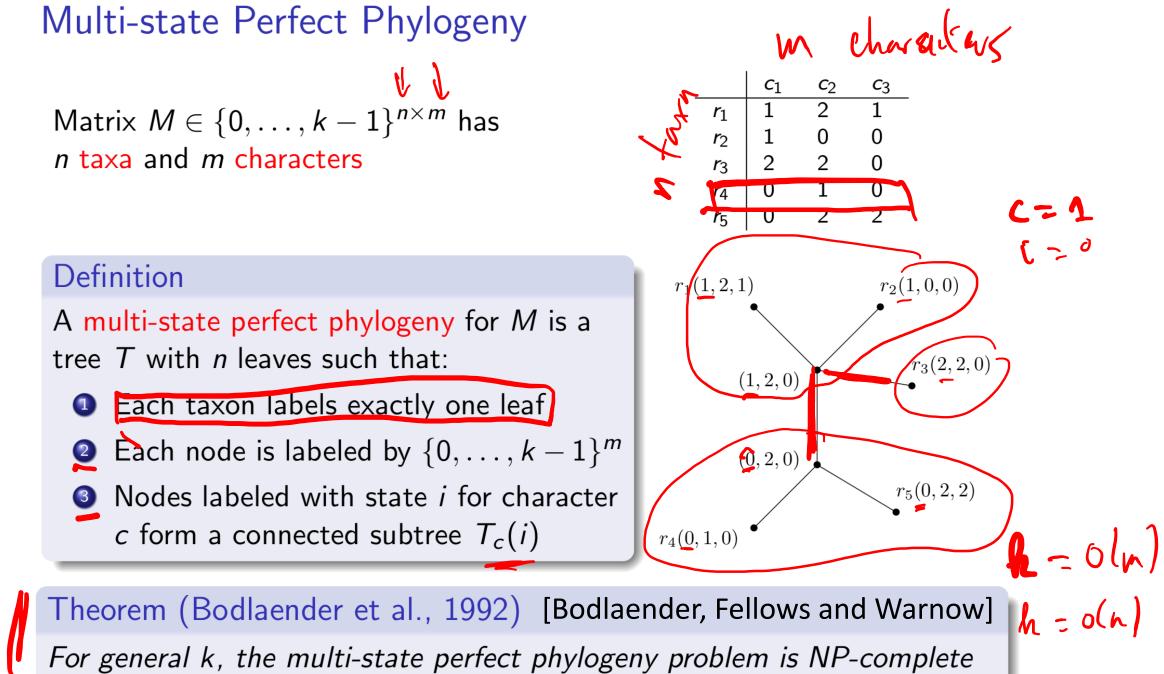
Infinite Alleles Model = Multi-state Perfect Phylogeny



Infinite alleles model:

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Characters have integer states

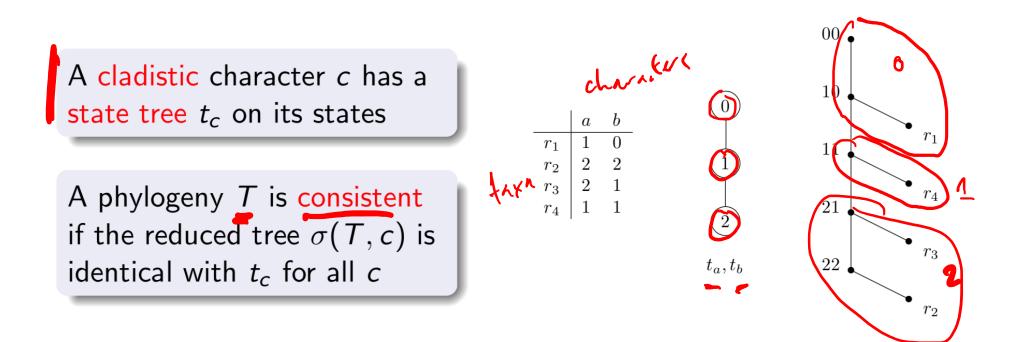


Cladistic vs. Qualitative Characters

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \ldots, k-1\}^m$
- 3 Nodes with state *i* for character *c* form a connected subtree $T_c(i)$



Cladistic vs. Qualitative Characters

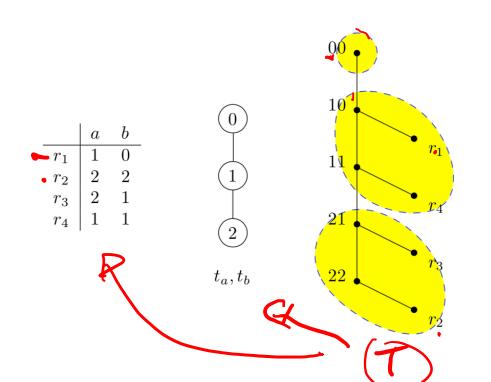
Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \ldots, k-1\}^m$
- **③** Nodes with state *i* for character *c* form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c



Cladistic vs. Qualitative Characters

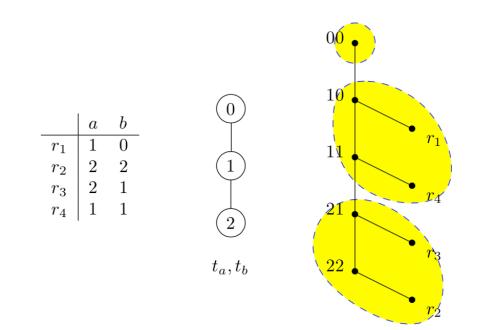
Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \ldots, k-1\}^m$
- 3 Nodes with state *i* for character *c* form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c



Multi-state Cladistic Perfect Phylogeny $n \times m$ $n \times m$ $n \times m$ Use t1, --, tm C a = 3A 39

Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

• Lecture notes

Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem: Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of Twith minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

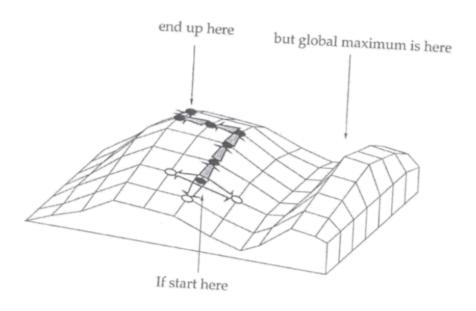
General Large Maximum Parsimony Phylogeny

• This problem is NP-hard

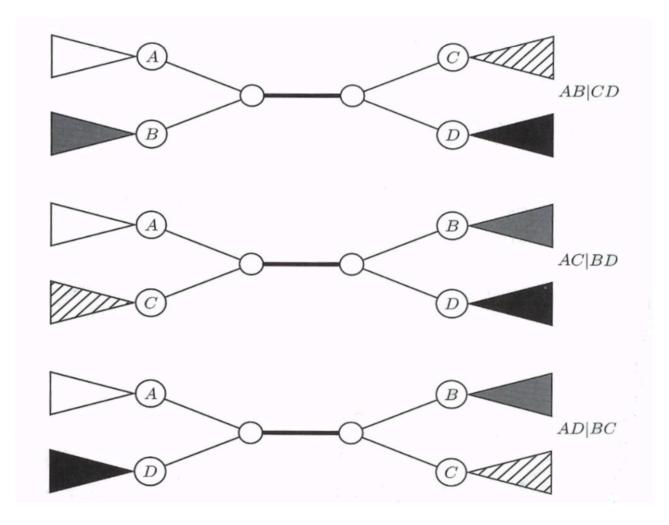
 Heuristics using local search (tree moves)

- 1. Start with an arbitrary tree T.
- 2. Check "neighbors" of T.
- 3. Move to a neighbor if it provides the best improvement in parsimony/likelihood score.

Caveats: Could be stuck in **local** optimum, and not achieve global optimum



Example: Nearest-Neighbor Interchange (NNI)



Rearrange four subtrees defined by one internal edge

Figure: Jones and Pevzner

Outline

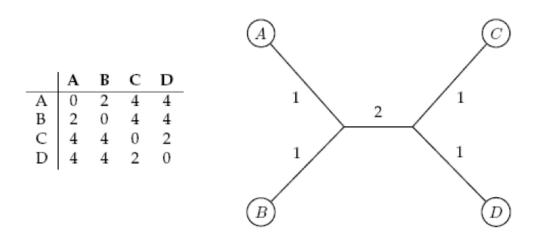
- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

• Lecture notes

Distance-based Phylogeny

- Small additive distance phylogeny problem
 - In P
 - Recursive algorithm using neighboring leaves
- Large additive distance phylogeny problem
 - In P -- two algorithms:
 - 1. Find degenerate triples and resolve these
 - 2. Neighbor joining: identifies neighboring leaves even when tree is not given
 - Complete characterization of additive matrices using the four-point condition



Character-based Phylogeny

- Small maximum parsimony problem
 - Sankoff algorithm: dynamic programming
- Two-state perfect phylogeny problem
 - In P: O(mn) time
 - Complete characterization as conflict free binary matrices
- Multi-state perfect phylogeny problem
 - NP-hard in general
 - In P given state trees
- Large maximum parsimony problem
 - NP-hard
 - Heuristic using local search