CS 466 Introduction to Bioinformatics Lecture 17

Mohammed El-Kebir October 23, 2020

Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

Lecture notes

Maximum Parsimony

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

Binary Characters

Characters 1 2 3 4 5 A 0 1 1 0 0 Signature B 0 0 1 1 0 D 1 1 0 1 1

Characters only have two possible states

Possible Encoding:

0 : not-mutated

1: mutated

Possible Encoding:

0 : no wings

1: wings

Binary Characters

Characters

	1	2	3	4	5
A	0	1	1	0	0
Species O ®	0	0	1	1	0
Spe	1	1	1	1	0
D	1	1	0	1	1

Characters only have two possible states

Possible Encoding:

0 : not-mutated

1: mutated

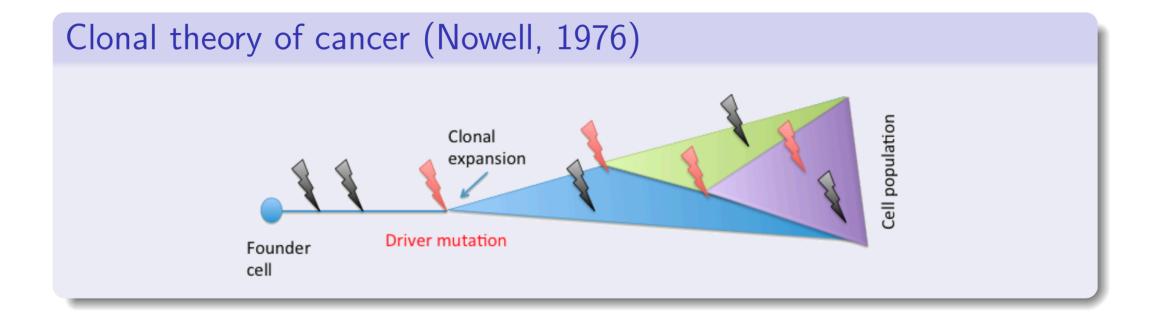
Possible Encoding:

0 : no wings

1: wings

Question: Given *n* binary characters, what is the smallest parsimony score?

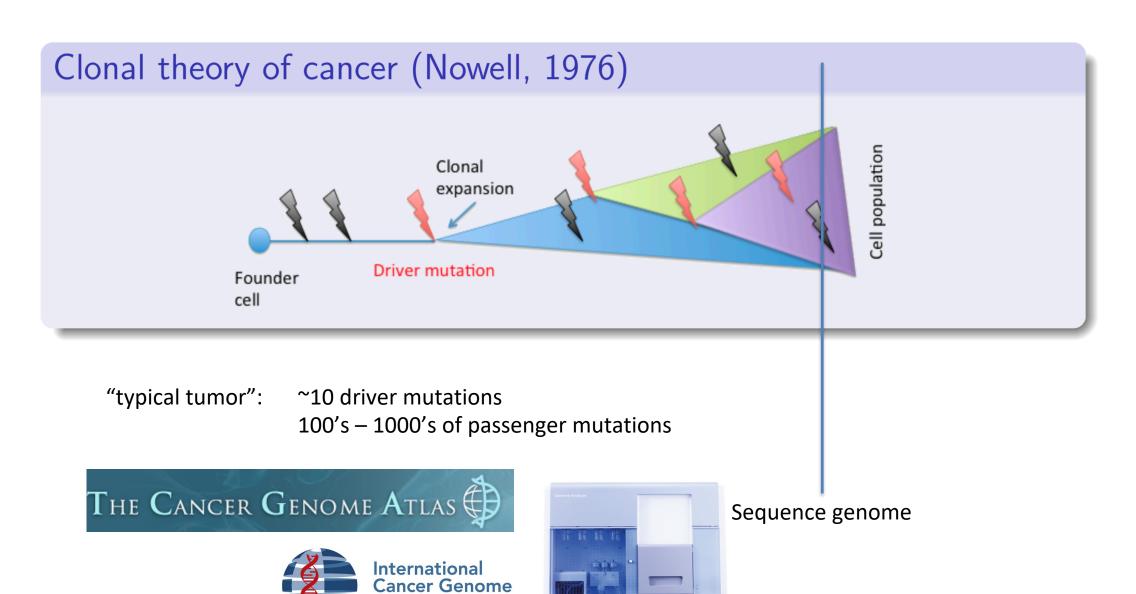
Somatic Mutations and Cancer



"typical tumor": ~10 driver mutations

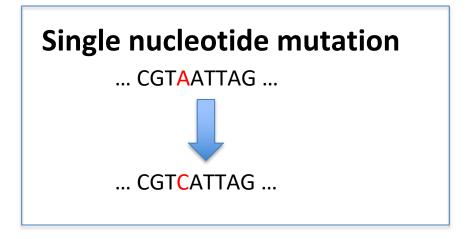
100's – 1000's of passenger mutations

Somatic Mutations and Cancer

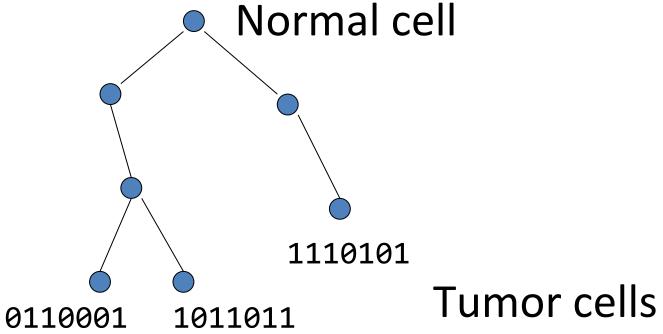


Consortium

Progression of Somatic Mutations

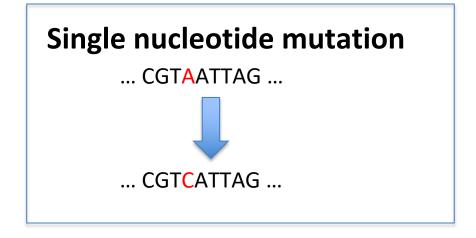


0 = normal 1 = mutated



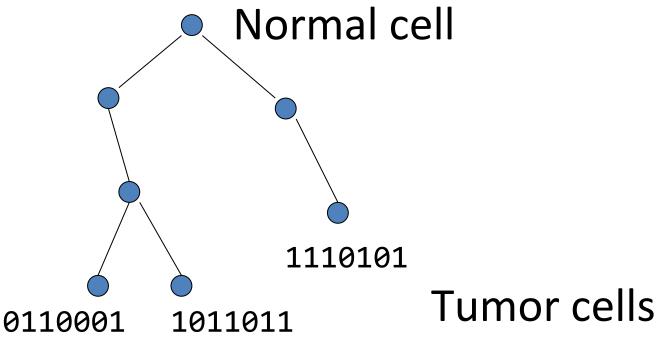
Root is the normal, founder cell and leaves are cells in tumor.

Progression of Somatic Mutations



0 = normal

1 = mutated



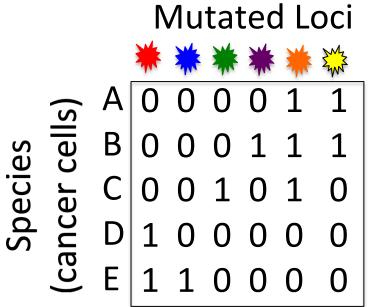
Root is the normal, founder cell and leaves are cells in tumor.

Infinite sites assumption: each locus mutates only once.

Infinite Sites Model = Two-state Perfect Phylogeny

The genome is large Mutations are rare

Infinite sites model: multiple mutations never occur at the same position



1: mutated

0: not

All sites are bi-allelic: mutated or not.

Two-state Perfect Phylogeny

Matrix $M \in \{0,1\}^{n \times m}$ has n taxa and m characters

Taxon f has state 1 for character c

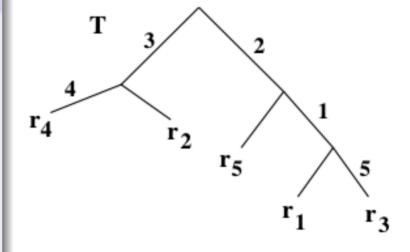
 ⇔ f possesses character c

	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	<i>C</i> ₅
$\overline{r_1}$	1	1	0	0	0
r_2	0	0	1	0	0
<i>r</i> ₃	1	1	0	0	1
<i>r</i> ₄	0	0	1	1	0
<i>r</i> ₅	0	1 0 1 0 1	0	0	0

Definition

A perfect phylogeny for *M* is a rooted tree *T* with *n* leaves such that:

- Each taxon labels only one leaf
- ② Each character labels only one edge
- Character possessed by a taxon are on unique path to root



Root node is all zero ancestor

Two-state Perfect Phylogeny Problem

Input:

Matrix $M \in \{0,1\}^{n \times m}$ has n taxa and m characters

• Taxon f has state 1 for character c $\Leftrightarrow f$ possesses character c

	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	<i>C</i> ₅
$\overline{r_1}$	1	1	0	0	0
<i>r</i> ₂	0	0	1	0	0
<i>r</i> ₃	1	1	0	0	1
<i>r</i> ₄	0	0	1	1	0
<i>r</i> ₅	0	1 0 1 0 1	0	0	0

Problem

Given $M \in \{0,1\}^{n \times m}$ does M have a perfect phylogeny?

Try it yourself!

Only one of these matrices can be used to build a perfect phylogeny.

- (1) As a group, decide on an approach to try to determine which one is which.
- (2) Try out your approach to see if you can construct the tree.
- (3) What did you learn from your attempt?

$$\mathsf{M}_2 = \begin{array}{c} \mathsf{Characters} \\ \mathsf{C}_1 \, \mathsf{C}_2 \, \mathsf{C}_3 \, \mathsf{C}_4 \, \mathsf{C}_5 \\ \mathsf{A} & \mathsf{O} & \mathsf{O} & \mathsf{1} & \mathsf{1} & \mathsf{0} \\ \mathsf{B} & \mathsf{O} & \mathsf{0} & \mathsf{1} & \mathsf{0} & \mathsf{1} \\ \mathsf{C} & \mathsf{1} & \mathsf{1} & \mathsf{0} & \mathsf{0} & \mathsf{1} \\ \mathsf{D} & \mathsf{1} & \mathsf{1} & \mathsf{0} & \mathsf{0} & \mathsf{0} \\ \mathsf{E} & \mathsf{O} & \mathsf{1} & \mathsf{0} & \mathsf{0} & \mathsf{1} \\ \end{array}$$

The Perfect Phylogeny Problem – Preliminaries

Problem

Given $M \in \{0,1\}^{n \times m}$ does M have a perfect phylogeny?

Definition

I(c) is the set of taxa that possess character c; and $\sigma(f)$ is the set of characters possessed by taxon f.

	c_1	<i>c</i> ₂	<i>c</i> 3	<i>C</i> ₄	C5	_
r_1	1	1	0	0	0	
<i>r</i> ₂	0	0	1	0	0	
<i>r</i> 3	1	1	0	0	1	\Rightarrow
r_4	0	0	1	1	0	
<i>r</i> ₅	0	1	0	0 0 0 0 1	0	

$$I(c_1) = \{r_1, r_3\}$$

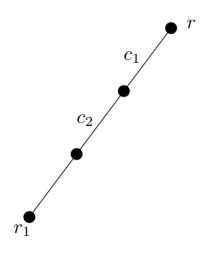
 $\sigma(r_1) = \{c_1, c_2\}$

Sort columns of M s.t. c < d iff $|I(c)| \ge |I(d)|$. Break ties arbitrarily.

- Consider rows of *M* iteratively
 - $ightharpoonup T_i$ is tree of first i rows of M
- T_1 is a path graph
 - ► Terminal nodes *r* and 1
 - $ightharpoonup |\sigma(1)| + 1$ edges labeled by $\sigma(1)$

$$c < d \text{ iff } |I(c)| \geq |I(d)|$$

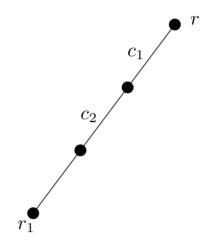
	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	<i>C</i> 5
r_1	1	1	0	0	0
r_2	0	0	1	0	0
r_3	1	1	0	1	0
<i>r</i> ₄	0	0	1	0	1
<i>r</i> ₅	1	0	0	0	0



- Consider rows of *M* iteratively
 - $ightharpoonup T_i$ is tree of first *i* rows of *M*
- T_1 is a path graph
 - ► Terminal nodes *r* and 1
 - ▶ $|\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters $\sigma(i+1)$
 - ★ Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$

$$c < d \text{ iff } |I(c)| \geq |I(d)|$$

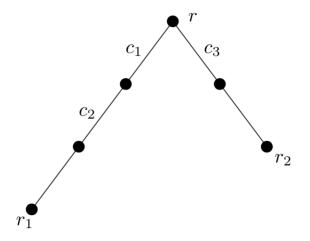
	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> ₄	<i>c</i> 5
r_1	1	1	0	0	0
r_2	0	0	1	0	0
<i>r</i> ₃	1	1	0	1	0
r_4	0	0	1	0	1
<i>r</i> ₅	1	0	0	0	0



- Consider rows of *M* iteratively
 - $ightharpoonup T_i$ is tree of first *i* rows of *M*
- T_1 is a path graph
 - ► Terminal nodes r and 1
 - $ightharpoonup |\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters $\sigma(i+1)$
 - ★ Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - ightharpoonup Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

$$c < d \text{ iff } |I(c)| \ge |I(d)|$$

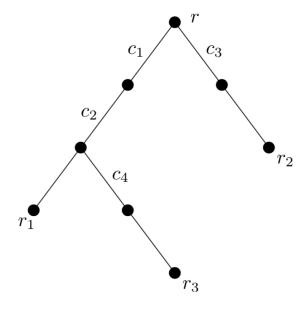
	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>C</i> 4	<i>C</i> 5
$\overline{r_1}$	1	1	0	0	0
r_2	0	0	1	0	0
<i>r</i> ₃	1	1	0	1	0
<i>r</i> ₄	0	0	1	0	1
<i>r</i> ₅	1	0	0	0	0



- Consider rows of *M* iteratively
 - $ightharpoonup T_i$ is tree of first *i* rows of *M*
- T_1 is a path graph
 - ► Terminal nodes *r* and 1
 - $ightharpoonup |\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters $\sigma(i+1)$
 - ★ Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - ightharpoonup Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

$$c < d \text{ iff } |I(c)| \geq |I(d)|$$

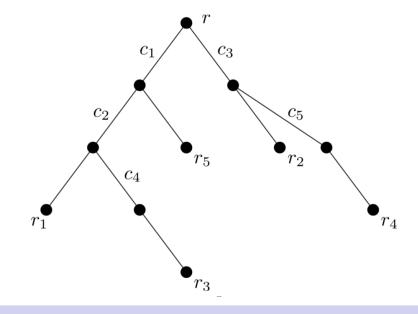
	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	<i>c</i> ₅
r_1	1	1	0	0	0
r_2	0	0	1	0	0
r_3	1	1	0	1	0
<i>r</i> ₄	0	0	1	0	1
<i>r</i> ₅	1	0	0	0	0



- Consider rows of *M* iteratively
 - $ightharpoonup T_i$ is tree of first *i* rows of *M*
- T_1 is a path graph
 - Terminal nodes r and 1
 - $ightharpoonup |\sigma(1)| + 1$ edges labeled by $\sigma(1)$
- T_{i+1} is a supertree of T_i
 - Let v be last node on walk from r matching characters $\sigma(i+1)$
 - ★ Character *d* is the last match
 - ★ Unmatched characters $\tau(i+1)$
 - ightharpoonup Extend T_i with path Π
 - ★ Π has terminals v and i+1
 - ★ Π has $|\tau(i+1)| + 1$ edges labeled by $\tau(i+1)$

$$c < d \text{ iff } |I(c)| \geq |I(d)|$$

	c_1	<i>c</i> ₂	<i>c</i> ₃	<i>c</i> ₄	c ₅
$\overline{r_1}$	1	1	0	0	0
r_2	0	0	1	0	0
<i>r</i> ₃	1	1	0	1	0
<i>r</i> ₄	0	0	1	0	1
<i>r</i> ₅	1	0	0	0	0



Lemma

Let $M_i \in 0, 1^{i \times m}$ be a submatrix of M. If M is conflict-free then T_i is a perfect phylogeny for M_i .

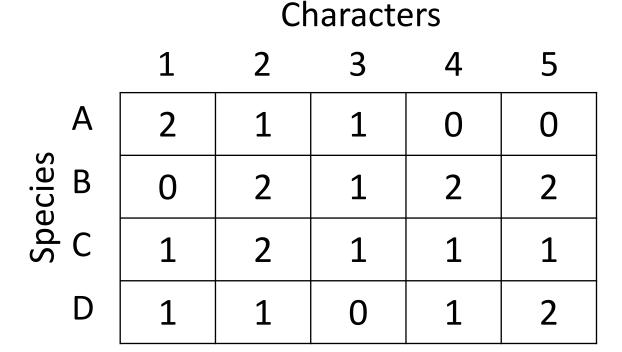
Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

Lecture notes

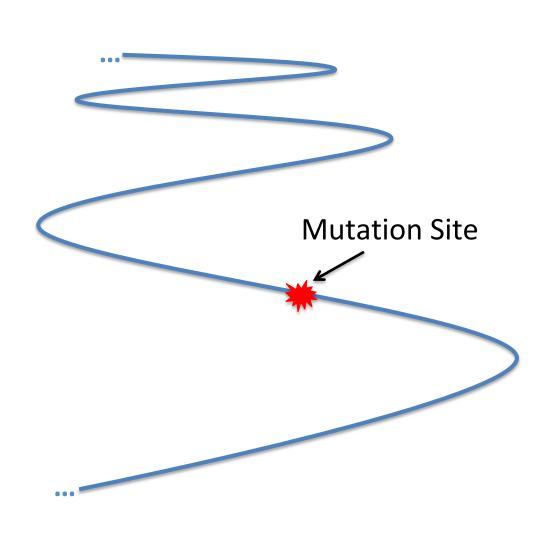
Integer Characters



Characters have **k** possible states

Question: Given *n* integer characters with *k* states, what is the smallest parsimony score?

Infinite Alleles Model = Multi-state Perfect Phylogeny



Infinite alleles model:

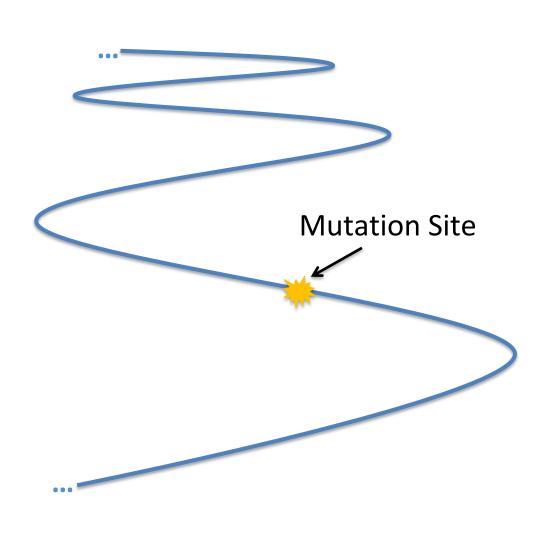
- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Site History:

Time

Characters have integer states

Infinite Alleles Model = Multi-state Perfect Phylogeny

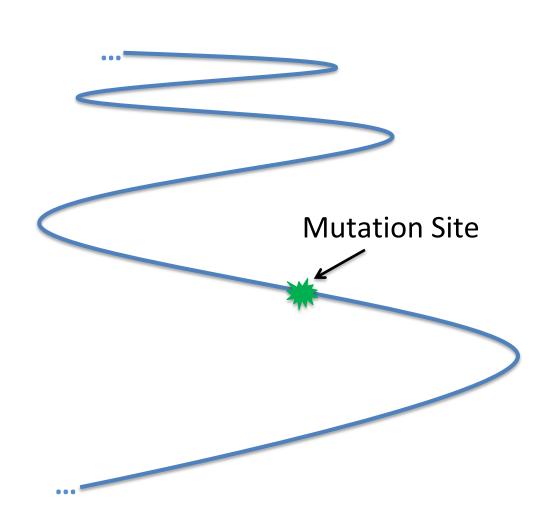


Infinite alleles model:

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Characters have integer states

Infinite Alleles Model = Multi-state Perfect Phylogeny



Infinite alleles model:

- For any mutation, there are an infinite number of possibilities of what mutation looks like (states).
- So, the same position can be mutated multiple times, but it never mutates to the same "allele" or state.

Characters have integer states

Multi-state Perfect Phylogeny

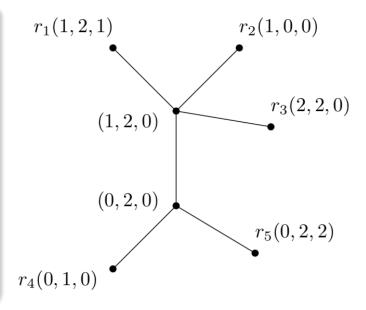
Matrix $M \in \{0, \dots, k-1\}^{n \times m}$ has n taxa and m characters

	c_1	<i>c</i> ₂	<i>c</i> ₃
r_1	1	2	1
<i>r</i> ₂	1	0	0
r ₁ r ₂ r ₃ r ₄ r ₅	2	2	0
<i>r</i> ₄	0	1	0
<i>r</i> ₅	0	2	2

Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \dots, k-1\}^m$
- 3 Nodes labeled with state i for character c form a connected subtree $T_c(i)$



Theorem (Bodlaender et al., 1992) [Bodlaender, Fellows and Warnow]

For general k, the multi-state perfect phylogeny problem is NP-complete

Cladistic vs. Qualitative Characters

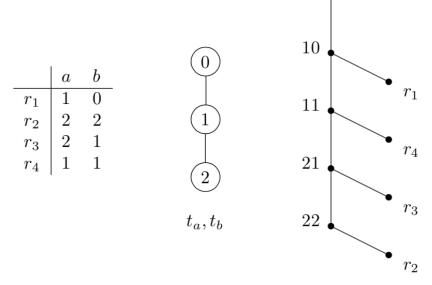
Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- ② Each node is labeled by $\{0, \ldots, k-1\}^m$
- 3 Nodes with state i for character c form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c



00

Cladistic vs. Qualitative Characters

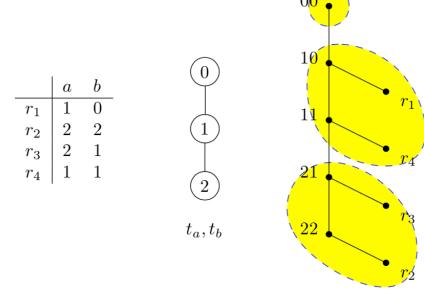
Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- ② Each node is labeled by $\{0, \ldots, k-1\}^m$
- 3 Nodes with state i for character c form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c



Cladistic vs. Qualitative Characters

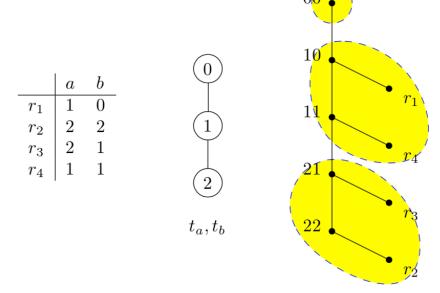
Definition

A multi-state perfect phylogeny for M is a tree T with n leaves such that:

- Each taxon labels exactly one leaf
- 2 Each node is labeled by $\{0, \dots, k-1\}^m$
- 3 Nodes with state i for character c form a connected subtree $T_c(i)$

A cladistic character c has a state tree t_c on its states

A phylogeny T is consistent if the reduced tree $\sigma(T, c)$ is identical with t_c for all c



Multi-state Cladistic Perfect Phylogeny

Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

Reading:

Lecture notes

Small and a Large Problem

Small Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$ and tree T with m leaves, find assignment of character states to each internal vertex of T with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:

Given $m \times n$ matrix $A = [a_{i,j}]$, find a tree T with m leaves labeled according to A and an assignment of character states to each internal vertex of T with minimum parsimony score.

General Large Maximum Parsimony Phylogeny

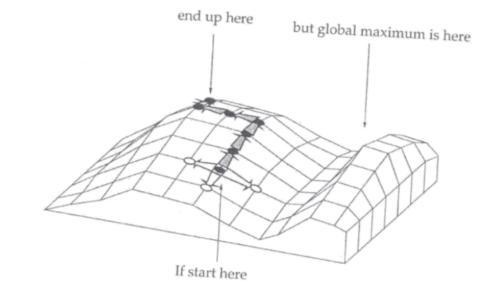
 This problem is NP-hard

 Heuristics using local search (tree moves)

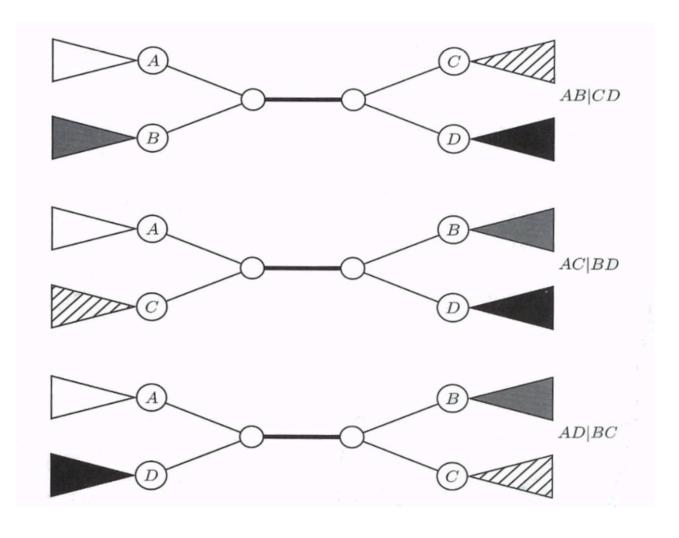
- 1. Start with an arbitrary tree *T.*
- 2. Check "neighbors" of *T*.
- 3. Move to a neighbor if it provides the best improvement in parsimony/likelihood score.

Caveats:

Could be stuck in **local** optimum, and not achieve global optimum



Example: Nearest-Neighbor Interchange (NNI)



Rearrange four subtrees defined by one internal edge

Figure: Jones and Pevzner

Outline

- Two-State Perfect Phylogeny
- Multi-State Perfect Phylogeny
- Large Maximum Parsimony Phylogeny Problem
- Summary

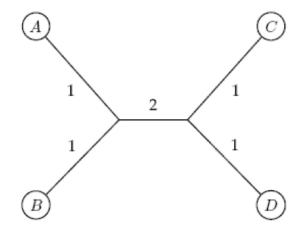
Reading:

Lecture notes

Distance-based Phylogeny

- Small additive distance phylogeny problem
 - In P
 - Recursive algorithm using neighboring leaves
- Large additive distance phylogeny problem
 - In P -- two algorithms:
 - 1. Find degenerate triples and resolve these
 - 2. Neighbor joining: identifies neighboring leaves even when tree is not given
 - Complete characterization of additive matrices using the four-point condition

	Α	В	C	
A	0	2	4	4
В	2	0	4	4
C	4	4	4 4 0 2	2
D	0 2 4 4	4	2	0



Character-based Phylogeny

- Small maximum parsimony problem
 - Sankoff algorithm: dynamic programming
- Two-state perfect phylogeny problem
 - In P: O(mn) time
 - Complete characterization as conflict free binary matrices
- Multi-state perfect phylogeny problem
 - NP-hard in general
 - In P given state trees
- Large maximum parsimony problem
 - NP-hard
 - Heuristic using local search