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Outline
• Character-based phylogeny (small)
• Application of small phylogeny maximum parsimony problem to cancer

Reading:
• Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner
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Character-Based Tree Reconstruction
• Characters may be morphological features
• Shape of beak {generalist, insect catching, ...} 
• Number of legs {2,3,4, ..}
• Hibernation {yes, no}

• Character may be nucleotides/amino acids
• {A, T, C, G}
• 20 amino acids

• Values of a character are called states
• We assume discrete states
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Character-Based Phylogeny Reconstruction
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Input
characters

Output
optimal tree

Question: What is optimal?

Want: Optimization criterion
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Character-Based Phylogeny Reconstruction

Input
characters

Output
optimal tree

Question: What is optimal?

Want: Optimization criterion

Question: How to optimize this criterion?

Want: Algorithm

Character-Based Phylogeny Reconstruction: Input
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Characters / states State 1 State 2
Mouth Smile Frown
Eyebrows Normal Pointed
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Character-Based Phylogeny Reconstruction: Criterion
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Question: Which tree is better?
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Character-Based Phylogeny Reconstruction: Criterion
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Parsimony: minimize number of changes on edges of tree



Why Parsimony?

• Ockham’s razor: “simplest” explanation 
for data
• Assumes that observed character

differences resulted from the fewest 
possible mutations
• Seeks tree with the lowest parsimony 

score, i.e. the sum of all (costs of) 
mutations in the tree.
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Again, a Small and a Large Problem
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Small Maximum Parsimony Phylogeny Problem:
Given 𝑚 × 𝑛 matrix 𝐴 = [𝑎!,#] and tree 𝑇 with 𝑚 leaves, find 

assignment of character states to each internal vertex of 𝑇
with minimum parsimony score.

Large Maximum Parsimony Phylogeny Problem:
Given 𝑚 × 𝑛 matrix 𝐴 = [𝑎!,#], find a tree 𝑇 with 𝑚 leaves labeled 

according to 𝐴 and an assignment of character states to each internal 
vertex of 𝑇 with minimum parsimony score.

Question: Are both problems easy (i.e. in P)?
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Small Maximum Parsimony Phylogeny Problem

31

Question: There are ! = 4 characters in the $ = 2 taxa (leaves). 
Can we solve each character separately? 
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Small Maximum Parsimony Phylogeny Problem
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Key observations: (1) Characters can be solved independently. 
(2) Optimal substructure in subtrees.



Recurrence

14



15



Recurrence for Small Maximum Parsimony Problem
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Let 𝜇(𝑣, 𝑠) be the minimum number of mutations in the subtree rooted at 𝑣
when assigning state 𝑠 to 𝑣.

Small Maximum Parsimony Phylogeny Problem:
Given rooted tree 𝑇 whose leaves are labeled by 𝜎 ∶ 𝐿 𝑇 → Σ, find assignment 

of states to each internal vertex of 𝑇 with minimum parsimony score.

c(s, t) =

(
0, if s = t

1, if s 6= t,

µ(v, s) = min

8
><

>:

1, if v 2 L(T ) and s 6= �(v),

0, if v 2 L(T ) and s = �(v),
P

w2�(v) mint2⌃{c(s, t) + µ(w, t)}, if v 62 L(T ).

Let 𝛿(𝑣) be the set of children of 𝑣.



Example
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Pseudocode for Filling and Traceback
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Sankoff Algorithm (Sankoff 1975)
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Small Maximum Parsimony Phylogeny Problem:
Given ! × # matrix $ = ['(,*] and tree , with ! leaves, find 

assignment of character states to each internal vertex of ,
with minimum parsimony score.

- ., /
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Outline
• Recap character-based phylogeny
• Application of small phylogeny maximum parsimony problem to cancer

Reading:
• Chapters 10.2, 10.5-10.8, 10.9 in Jones and Pevzner
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Clonal Theory of Cancer 
[Nowell, 1976]

Tumorigenesis: (i) Cell Mutation

21

Founder 
tumor cell

Mutation



Clonal Theory of Cancer 
[Nowell, 1976]

Tumorigenesis: (i) Cell Mutation, (ii) Cell Division

2

Heterogeneous Tumor



Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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Primary 
Tumor

Brain 
Metastasis

Liver 
Metastasis



Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration
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tim
e

primary tumor P metastasis M1metastasis M2

mutation
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Cell Tree
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Tumorigenesis: (i) Cell Division, (ii) Mutation & (iii) Migration

3

tim
e

primary tumor P metastasis M1metastasis M2

mutation

migration

Cell Tree Phylogenetic Tree T

Goal: Given phylogenetic tree T, find parsimonious vertex labeling ℓ with fewest migrations

Vertex 
labeling ℓ

Slatkin, M. and Maddison, W. P. (1989). A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics, 123(3), 603–613.
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Minimum Migration Analysis in Ovarian Cancer
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous 
ovarian cancer. Nature Genetics.
• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]
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McPherson et al. (2016). Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous 
ovarian cancer. Nature Genetics.
• Instance of the maximum parsimony small phylogeny problem [Fitch, 1971; Sankoff, 1975]



Minimum Migration History is Not Unique
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• Enumerate all minimum-migration vertex labelings in the backtrace step
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• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †
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Comigrations: Simultaneous Migrations of Multiple Clones

† Not necessarily true in the case of directed cycles
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Comigrations: Simultaneous Migrations of Multiple Clones
• Multiple tumor cells migrate simultaneously through the blood stream [Cheung et al., 2016]
• Second objective: number γ of comigrations is the number of multi-edges in migration graph G †
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Parsimonious Migration History (PMH): Given a phylogenetic tree 𝑇 and a set 𝒫 ⊆ S,M, R
of allowed migration patterns, find vertex labeling ℓ with minimum migration number 𝜇∗(𝑇)
and smallest comigration number ,𝛾(𝑇).

Constrained Multi-objective Optimization Problem

8
El-Kebir, M., Satas, G., & Raphael, B. J. (2018). Inferring parsimonious migration histories for metastatic cancers. Nature Genetics, 50(5), 718–726.

a b cP = {S,M}
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Results [El-Kebir, WABI 2018]
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Theorem 1: PMH is NP-hard when 𝒫 = S

Theorem 2: PMH is fixed parameter 
tractable in the number 𝑚 of locations 
when 𝒫 = S

Parsimonious Migration History (PMH): Given a phylogenetic tree 𝑇 and a set 𝒫 ⊆ S,M, R
of allowed migration patterns, find vertex labeling ℓ with minimum migration number 𝜇∗(𝑇)
and smallest comigration number ,𝛾(𝑇).
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PMH is NP-hard when 𝒫 = S
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3-SAT: Given φ = ⋀!"#$ (𝑦!,# ∨ 𝑦!,& ∨ 𝑦!,')
with variables {𝑥#, … , 𝑥(} and 𝑘 clauses, 
find 𝜙 ∶ 𝑛 → 0,1 satisfying φ Σ = {𝑥", … , 𝑥#, ¬𝑥", … , ¬𝑥#, 𝑐", … 𝑐$ , ⊥}

x1

¬x1 ¬x2

¬x3

x3

x2

?

c1 c2



PMH is NP-hard when 𝒫 = S

Three ideas:
1. Ensure that 𝑥,¬𝑥 ∈ 𝐸(𝐺)

or ¬𝑥, 𝑥 ∈ 𝐸(𝐺)
2. Ensure that ℓ∗ 𝑟 𝑇 = ⊥
3. Ensure that φ is satisfiable if 

and only if ℓ∗ encodes a 
satisfying truth assignment
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Lemma: Let 𝐵 > 10𝑘 + 1 and 𝐴 > 2𝐵𝑛 + 27𝑘.
Then, φ is satisfiable if and only if 𝜇∗ 𝑇 = 𝐵 + 1 𝑛 + 25𝑘

PMH is NP-hard when 𝒫 = S

Three ideas:
1. Ensure that 𝑥,¬𝑥 ∈ 𝐸(𝐺)

or ¬𝑥, 𝑥 ∈ 𝐸(𝐺)
2. Ensure that ℓ∗ 𝑟 𝑇 = ⊥
3. Ensure that φ is satisfiable if 

and only if ℓ∗ encodes a 
satisfying truth assignment
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Σ = {𝑥#, 𝑥&, 𝑥', ¬𝑥#, ¬𝑥&, ¬𝑥', 𝑐#, 𝑐&, ⊥}
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¬x3

x3

x2

?
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3 3

✓

B + 5 B + 8 B + 5

9 11 9

φ = 𝑥# ∨ 𝑥& ∨ ¬𝑥' ∧ (¬𝑥#, ¬𝑥&, ¬𝑥')
𝑘 = 2, 𝑛 = 3

𝐵 = 10𝑘 + 2 = 22
𝐴 = 2𝐵𝑛 + 27k + 1 = 187

𝜇∗ 𝑇 = 𝐵 + 1 𝑛 + 25𝑘
= 23 ∗ 3 + 50 ∗ 2 = 119



Lemma: If (1) holds then ℓ∗ is a minimum migration labeling consistent with 7𝐺.

Lemma: If there exists labeling ℓ consistent with 7𝐺 then
dT (u, v) � dĜ(lcaĜ(u),

ˆ̀(v)) 8u, v 2 V (T ) such that u �T v. (1)

PMH is FPT in number 𝑚 of locations when 𝒫 = S
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Lemma: If (1) holds then ℓ∗ is a minimum migration labeling consistent with 7𝐺.

Lemma: If there exists labeling ℓ consistent with 7𝐺 then
dT (u, v) � dĜ(lcaĜ(u),
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Simulations
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Available on: https://github.com/elkebir-group/PMH-S


