CS 466

Introduction to Bioinformatics
Lecture 15




Course Announcements

HW 3 will be released Oct 23 — due Oct 31 by 11:59pm

Project proposal due on Nov 5 by 11:59pm
(Motivation, Datasets/papers, Planned method/experiments, Timeline)

Project report due on Dec 20




Outline

* Recap: RNA Secondary Structure Prediction
* Phylogenetics introduction

* Hierarchical clustering

* Additive distance phylogeny

* Four point condition

* Neighbor joining

Reading:
* Chapter 10.2 and 10.5-10.8 in Jones and Pevzner



Nussinov Algorithm — Dynamic Programming

Problem: Given RNA sequence v € {A, U, C, G}", find a pseudoknot-free secondary structure
with the maximum number of complementary base pairings

(1) (2) (3) (4)

Let s[i, j] denote the maximum
number of pseudoknot-free
complementary base pairings in

subsequence v;, ..., V; P i kil
I,j pair i unpaired j unpaired bifurcation

(0, if § > 7,

sli+1,7 — 1]+ 1, if i < jand (v;,v;) €T, (1)
sli. j] = max 4 SZ + 1,]: — 1], 1f2 <]: and (v;,v;) €T, (1%) Q?jestion;.

sli 4+ 1, 5], if i < 7, (2) Which case is
s[i,j — 1], if § < 7, (3) redundant?

|\ max;<r<;{sl, k| +slk+1,j]}, ifi<y, (4)




Nussinov Algorithm — Examr[)Ie \éVith Bifurcation
olabro~ SLA4 &\ =3

Where did'we
12345678 come¥onrm et (1) (2) (3) (4)
GCACGACG V8 T6
o(1)a)1 2 2 2@) ¢ 1
0)0001112\Cc2 ,. ,.
K Kbl b
000111(2|/as3 |
i,j pair i unpaired j unpaired bifurcation
00111(2)c 4
0o00(d)i1|es o =7
Lot T= T 1, if'i < j and (v;,v;) T))(3)
0 0 O 1| A 6 i f] = =T — 1], SZ’Z, 33 'ig<jand (vi,v5) €T, (1%)
7]]_maX<M if 4 .
001|C7 it iti <y, (2)
=T if i < g, (3)
00|cs —Pmax; i (sli, K] + sk + 1,7}, ifi <, (4)
slamd = SlZy
GCACGACG
14,6} =

old, el = s‘{im ,ZJ 1<§ <8

S
()-(()) sb 440 1 403.83 s



Nussinov Algorithm — Traceback Step

Push (1, n) onto stack
Repeat until stack is empty:
- pop (/,))
H,-] ) if i > j continue
Al else if s[i+1,j] = s[i,j]
push (i+1,))
else if s[i,j-1] = S[i,j]
i push (i,j-1)

junpairejd else if s[i+1,j-1] + 1 = s]i,j]

record (i,j) base pair
3 push (i+1,j-1)
i+19—@/-!

| else for k= i+1 toj-1
li'.ipairj if s[i,k]+s[k+1,j] = s[i,j]
push (k+1,j)
push (i,k)
break (for loop)

i

i kol

bifurcation



Nussinov Algorithm — Traceback Step

j unpaired

i kol

bifurcation

i

J

i,j pair

Push (1, n) onto stack
Repeat until stack is empty:
pop (/,))
if i > j continue
else if s[i+1,j] = s[i,j]
push (i+1,))
else if s[i,j-1] = S[i,j]
push (i,j-1)
else if s[i+1,j-1] + 1 = s]i,j]
record (i,j) base pair
push (i+1,j-1)
else for k= i+1 toj-1
if s[i,k]+s[k+1,j] = s[i,j]
push (k+1,j)
push (i,k)
break (for loop)

BAGL\‘T(QLL\\ (-4—: Y]7

BackTrack(i, j)
ifi<j
if s[i+1, j] = sli, j]
BackTrack(i+1, j)
else if s[i, j-1] = S[i, j]
BackTrack(i, j-1)
else if s[i+1,j-1] + 1 = s[i, j]
Output (i, j)
BackTrack(i+1, j-1)
else for k=i+1to -1
if s[i, k]+s[k+1, j] = s]i, J]
BackTrack(k+1, j)
BackTrack(i, k)
break (for loop)



Outline

* Phylogenetics introduction
* Hierarchical clustering

* Additive distance phylogeny
* Four point condition

* Neighbor joining

Reading:
* Chapter 10.2 and 10.5-10.8 in Jones and Pevzner



Alignments and Trees

AXZ AXZ
| 2 \V4
3 XK o Z
3] AXXZ 1 AX _ _Z
) 6§ 2 Ak _Z Vy
? AY _ _ 2 V2
- > AY XX Z _é\,‘\g\
4 K M ¢
Guide tree in
5 AYXYZ 1 1
progressive alignment
Tree / star alignment ¢ 2O (ay.—\.a

Tree topology represents similarity/distance between sequences

Biological sequences typically come from the present




Evolutionary Studies and Phylogenies

* Since Darwin’s book (1859) until 1960s:
Phylogeny reconstruction from
anatomical features

0N

THE ORIGIN OF SPECIES

BY MEASS OF NATURAL SELECTION,

* Subjective observations led to
inconclusive/incorrect phylogenies

By CHARLES DARWIN, M,

,' LOXDON
JOHN MUREAY, ALBEMARLE STREEY



Evolutionary Studies and Phylogenies

* Subjective observations led to
inconclusive/incorrect phylogenies

40

354+

304+

Example

of years

204

* Giant pandas look like bears but have
features that are unusual for bears and
typical for racoons

15+

Millions

104+

* In 1985, Steven O’Brien and colleagues oL | | ‘ PN
solved the giant panda classification T o5 )47 -
prOblem USing DNA SequenceSLa BROWN P(‘!LAR BI:.»\CK SP‘I;CTACL DEI.:NT l.{;CC\OC:N\RED PANDA

I

algorithms

11



Out of Africa Hypothesis

4
130,000 yrs Ry |
— J 13,000 yrs
40,000-60,000 yrs

http:/ /www.becominghuman.org

Vigilant, Stoneking, Harpending, Hawkes, and Wilson (1991)

Out of Africa Hypothesis claims that our most ancient ancestor lived
in Africa roughly 200,000 years ago

12




Common origin of

1 Chukchi
% 2 Australian

3 Australian
4 Piman

5 Italian

~——6 PNG Highland

gt 7 coast
1 8PNG Highiand

- 9 Georgian

‘ ——10 German

_— 11 Uzbek
———12 Saam
r—13 Crimean Tatar
14 Dutch
15 French

16 English
~—17 Samoan
—18 Korean

& New World peoples

38,500 + 1,500 yr ago

European, Asian, Australian,

19 Chinese

*

20 Asian Indian
21 Chinese
22 PNG coast
23 Austrahi
24 Evenki
25 Buriat
26 Khirgiz
27 Warao
28 Warao
29 Siberian Inui
30 Guarani

o/

Evolutionary Tree of Humans

African )lon-African

31 Japanese
100 32 Japanese
/Hﬂ\ 33 Mkamba
, wondo
35 Bamileke

36 Lisongo
37 Yoruba
38 Yoruba

f ~-39 Mandenka
100 ——40 Effik

41 Effik
42 Ibo
o8 ——431bo
~ [ 44 Mbenzele
| 45 Biaka

47 Mbenz
48 Kikuyu

50 Mbuti
98 151 Mbuti

_aw Hausa
|

52 San
_lxma San

13



Millions of years ago

Evolutionary Tree of Species

40+

35+

25+

204

154

10+

e

\-> Fs. silvestns

F.s. caffra

Korea 100 93 75
58
J. Bobtail
H. Brown Singapore
| -
\b e 2
: w ’aypt
Siamese Birman: ™Mau
Vietnam

: /) P ' ”
. c &~ 4
!& WW 4 . ) A
I' Singapura Burmese

BROWN POLAR BLACK SPECTACLED GIANT RACCOON RED PANDA
BEAR BEAR BEAR BEAR PANDA

http://bix.ucsd.edu/bioalgorithms/

S

=t

Sphynx

‘ Abyssinian
Brazil ™.

Texas

Hawaii

F.s. tristami

/
Henan Sokoke ri
{China) K Lanka
é enya 84

S

81

55
67

Korat

&)
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New Coon
Y()(k

R

=
“

[Lipinski et al., 2008]

!
Norwegian Forest l l

Germany
~  American SH

RS British SH

Persian

".
Exotic
Raly Russ. Blue
62 Egypt
Turk. Van
Israel
Turke A
+ Tunisia 4 ,'I“‘
% Turk, q
Angora & A

—
(%3]

A

v

Question: What are the evolutionary relationships between species?




Evolutionary Tree of a Tumor

Normal cell

Founder clone

1 107 O,

Subclones

Primary tumor Metastasis 1
; o |
é i 3
V"'\'(]Véh',;l' -----------------

https://www.sciencedaily.com/releases/2016/09/160909223504.htm

15



Phylogenetic Tree Reconstruction

Mouse: /' ACAGTGACGCCACACACGT
Gorilla: CCTGTGACGTAACAAACGA W & a} .S 1 .
Chimpanzee: | CCTGTGAGGTAGCAAACGA Z 1
7 V\. N
Human: Ny CCTGTGAGGTAGCACACGA
_Distance Metric & \
Vi Vo V3 Vy Q
v, O 0.l ]_ . ‘ 399 1
v, | .17 D . T V3
v, | .87 .28 © . . v,
v, | .59 .33 0 v,
___Distance Table k\/\r X Phylogenetic Tre
2o

Question: Given sequence data, how to reconstruct tree?




Outline

* Hierarchical clustering

* Additive distance phylogeny
* Four point condition

* Neighbor joining

Reading:
* Chapter 10.2 and 10.5-10.8 in Jones and Pevzner



Clustering

Given:

(1) n X n matrix D = |d; ;]

L]

Want:

(1) Homogeneity within clusters
(2) Separation between clusters

Close distances
from points in
separate clusters

Far distances from
points in the same
cluster




Hierarchical Clustering

N Q" U’»ﬁ

|{91. 92, 93.94. 05, 06, 07,08, 9o. 010 }

Organize elements into a tree N PP -
such that: J,L} '

 Leaves are elements s

« [Paths between leaves ({ ) J 0000

represent pairwise/
element distance ! 4
Similar elements lie

within same subtrees

| 92, 94,910}
92.94}

i,)

&

19



Hierarchical Clustering

Hierarchical Clustering (D, n)

Form n clusters each with one element

— -
Construct a graph T by assigning one vertex to each cluster
while there is more than one cluster

1.

2

3

4

5. Find the two closest clusters C; and G,

6 Merge C; and C, into new cluster C with [C;[ +/C,/ elements
7 Compute distance from C to all other clusters

8 Add a new vertex Cto T and connect to vertices C; and C,

9 Remove rows and columns of D corresponding to C; and C,

10. Add arow and column to D corresponding to the new cluster C
11. returnT

LILLLLLLL

g2 g4
a @ ®

n—1\7v

]|



Hierarchical Clustering

. Hierarchical Clustering (D, n)

1

2

3

4.
7
@

8.

9.

10.
11.

Form n clusters each with one element
Construct a graph T by assigning one vertex to each cluster

while there is more than one cluster

Find the two closest clusters C; and G, m C} = 6‘3 CZ - 97

Merge C, and C, into new cluster C with /C,/ +/C,/ elements C = {‘33 , % ‘,"—2!
Compute distance from £to all other clusters

Add a new vertex Cto T and connect to vertices C; and C,

Remove rows and columns of D corresponding to C; and C,

Add a row and column to D corresponding to the new cluster C

return T

{92, 9%

Lo

|

10

21




Hierarchical Clustering

Hierarchical Clustering (D, n)

Form n clusters each with one element
Construct a graph T by assigning one vertex to each cluster
while there is more than one cluster

1.

2

3

4

5. Find the two closest clusters C; and G,

6 Merge C; and C, into new cluster C with [C;[ +/C,/ elements

7 Compute distance from C to all other clusters

8 Add a new vertex Cto T and connect to vertices C; and C,

9 Remove rows and columns of D corresponding to C; and C,

10. Add arow and column to D corresponding to the new cluster C

11. returnT

g1,96,97}

Ja1.96}

% g8 9%

5 g10 g2

g2, 94,910}

g2,94 }




Hierarchical Clustering

1. Hierarchical Clustering (D, n)
2. Form n clusters each with one element
3. Construct a graph T by assigning one vertex to each cluster 1{9“92‘9“9'3'9"*’3‘*""9“:'}
4. while there is more than one cluster (91,08, 97)
5. Find the two closest clusters C; and G,
6 Merge C; and C, into new cluster C with [C;[ +/C,/ elements a1, 96}
7 Compute distance from C to all other clusters
8 Add a new vertex C to T and connect to vertices C, and C, s 00 010)
9 Remove rows and columns of D corresponding to C; and C, (92,94, 910}
10. Add arow and column to D corresponding to the new cluster C
11. returnT g2.04}

{93, 95,95}

{93, 9%}

gs g% g8 dv g1 g6 glo g2 g4 g9

23



Hierarchical Clustering

Hierarchical Clustering (D, n)

{g1,92,93,94,9%, 96,97, 98,99, 910}
Form n clusters each with one element

1.

2

3. Construct a graph T by assigning one vertex to each cluster {91.92.94,96,97,98,99, 910}

4. while there is more than one cluster

5. Find the two closest clusters C; and G, e

6 Merge C; and C, into new cluster C with [C;[ +/C,/ elements (g1, 96}

7 Compute distance from C to all other clusters —

8 Add a new vertex € to T and connect to vertices C; and G, foz. 000,010} | /8 3

9 Remove rows and columns of D corresponding to C; and C, {92, a1, 010}

10. Add arow and column to D corresponding to the new cluster C

11. returnT {g2.94}

/';‘\\\_
{93.95.95} 3
{93.0% k
r—l g8 gv g1 g6 glo g2 g4 g9

24



Hierarchical Clustering

. Hierarchical Clustering (D, n) ‘ -
{g1,92,93,94,9%,96, 97, 98,99, 910}
Form n clusters each with one element
Construct a graph T by assigning one vertex to each cluster {91.92.04,96,97,08,99, 910}

{91-96‘97}

Find the two closest clusters C; and G,

1
2
3
4. while there is more than one cluster
5
6 Merge C; and C, into new cluster C with [C,;[ +/C,[ elements (g1, 96}

@ Compute distance from C to all other clusters
8.  Add a new vertex Cto T and connect to vertices C; and C, b
9. Remove rows and columns of D corresponding to C; and C, {92, a1, 010}
10. Add arow and column to D corresponding to the new cluster C
11. returnT {g2,94}
{93-95-03}
Definition of distance |
93, 9%
between clusters affects H
. g3 g% g8 gr g1 g6 glo g2 g4 go
clustering!

25



Hierarchical Clustering — Linkage Criteria

Names Formula B
Maximum or complete-linkage clustering max {d(a,b):a€ A,be B}.
—

Minimum nkage clustering min { d(a,b) :a € A, b B}.
=2 — L

1
Mean or!ierag linkage clustering, or UPGMA Al B z Z d(a,b).
- | | | | acA beB
'@kage clustering, or UPGMC |les — e wher@an@re the centroids of clusters s and t, respectively.

m

2 ngm 1 n 1
Minimum energy clustering — Z ||0»i, - bj”2 — = Z lla; — aj||2 — Z |b; — bj“z
nm 521 n® 55 m® =T

https://en.wikipedia.org/wiki/Hierarchical_clusteringttLinkage criteria

26



Outline

* Additive distance phylogeny
* Four point condition
* Neighbor joining

Reading:
* Chapter 10.2 and 10.5-10.8 in Jones and Pevzner



Phylogenetic Tree Reconstruction

Mouse: ACAGTGACGCCACACACGT
Gorilla: CCTGTGACGTAACAAACGA
Chimpanzee: CCTGTGAGGTAGCAAACGA
Human: CCTGTGAGGTAGCACACGA

Distance Metric i

Vi Vo V3 Vy
— \4
V1 277 o
V2 . 17 - 3
V3 . 87 o 2 8 - V4
vy | .59 .33 .62 - vV,
Distance Table Phylogenetic Tree

Question: Given sequence data, how to reconstruct tree?




Distance

A distance (metric) on a set X is a functiond : X X X — R s.t. for all

X,Y,Z € X:

L d(x,y)=0 [non-negativity]|
i, d(x,y) =0ifandonlyifx =y [identity of indiscernibles]
i d(x,y) = d(y, x) [symmetry]
. d(x,y) <d(x,z) +d(z,vy) [triangle inequality’

Examples:
X =Randd(x,y) 4

« X = X¥* and d is Hamming distance
* X = X" and d is edit distance




Alignment vs. Distance Matrices

Mouse: ACAGTGACGCCACACACGT
Gorilla: CCTGTGACGTAACAAACGA
Chimpanzee: CCTGTGAGGTAGCAAACGA

Human: CCTGTGAGGTAGCACACGA

A>T
T >A
(> G

Gefiesoflength m in
n species

Easy: use (weighted) edit distance

Reverse V1
transformation S

not possible 11
due to loss of 10

information

n X n distance matrix

30



Distances In Trees

Given a treegT?with

itive edge weights
w(e), tree distance
d(i,j) between two
leaves i and j is the sum of

weights of edges on the
unique path fromitoj

TTIGS b

0 d{1,4)=12 +13 + 14 + 17 + 13 {69

— Q/ 0(7(4.,3) = ég

AW PO
o

31



General Distance vs. Tree Distance Dis boun <o

VL
ARG
- — )
Rat: % ACAGTGACGCCCCAAACGT
Mouse: ACAGTGACGCTACAAACGT—-
Gorilla: CCTGTGACGTAACAAACGA
Chimpanzee: CCTGTGACGTAGCAAACGA— \
Human: CCTGTGACGTAGCAAACGA____ X
Wi o 4>

Tree distance d (i, j) not necessarily equal to d; ; as
given by distance matrix obtained from alignment

wwile {2 dilume © o welE

32



Fitting a Tree to a Given Distance Matrix

* Given n species, we can compute n X n distance matrix D = [di,j]

—_—

* Evolution of these n species is described by an unknown tree
* We need an algorithm to construct tre@hat best fits D




Fitting a Tree to a Given Distance Matrix

* Given n species, we can compute n X n distance matrix D = [di,j]

* Evolution of these n species is described by an unknown tree
* We need an algorithm to construct tree T that best fits D

Distance-Based Phylogeny: Given n X n distance matrix b = |d; ;])
find edge-weighted tree T with n leaves thatbest fits D

S &F: E(T) > K7°  ——
Question: How to define ‘b it’? L& B D’/rj
v

JT ¥ 01"(’%\1_& from G 0('( ))) ‘-’J‘

P———




/Additive Distance Matrices
YN

Matrix D |S =)

if there

{eads-ts-atrvee]_'with L
di{T) = D; :
S np

(@ =a—
= W= N D P

I

35



Additive Dista

.

nce Matrices

Matrix D is | s>

If there
exists a tree T with

di{T) = D;

NON-ADDITIVE
otherwise =)

- (4)
A B C D
A0 2 4 4 1
B|2 0 4 4
Cl4 4 0 2 |
D4 4 2 0 I
A B C D
A0 2 2 2
B|2 0 3 2
cCl2 3 0 2
D2 2 2 0

ro

This is a constructive definition

36




A Small and a Large Problem

® Small Additive Distance Phylogeny Problem:

Givenn X n distance matrix D = [d; ;] andUnwei with
n leaves, determine edge weights such tha dr(i,j) =

Rié/:\/e >



A Small and a Large Problem

QD Small Additive Distance Phylogeny Problem:

Givermn X n distance matrix D = [d; ;| andUnweighted tree T with

n leaves, determine edge weights such that d+(i,j) = d; ;

erge Additive Distance Phylogeny Problem:
Givenrn

X n distance matrix D = |d; ;], find T with
n leaves and edge weights such tha dr(i,j) =d;;

__—




A Small and a Large Problem

Small Additive Distance Phylogeny Problem:
Given n X n distance matrix D = [d; ;| and'unweighted tree T

ith

n leaves, determine edge weights such that d(i, j) = 21@2

Large Additive Distance Phylogeny Problem:
Given n X n distance matrix D = [d; ;|, find tree T with

’
n leaves and edﬁe weights such that dr(i,j) = d; ;

Both problems can be solved in polynomial time .-




Additive Distance Problem with n = 3 Sequences

{(&S ('ao'(QA bc\»w
)
(coed fneooled) Ay
QZ UL (LZG} n Z@a,,teﬁ
Q-—/l Zu(j (B h-4A (n'\'&fq.(dﬁ{‘ucg
0 S, ﬂm q, L/A/ ('b LC{'
-2
O ’LV\ A 24()@)
Q n—-"1% (Z&t./.l—}
\\ // \’ (‘A L
\ di.c y wnyeo > A%N "‘4/-‘-)
\\)«04/ %f@/)
k n Lo v -
n-l o Fraal ve ke

Va2  var 1S
An->D else) 20



Additive Distance Problem withn = 3 Se
\npat : ’O(,)‘ D.’/L D),/L

pu,j
oy
sﬁ*m

que
V“

O

e

O

41



Additive Distance Problem with n > 3 Sequences

Unrooted binary tree with n leaves has 2n — 3 edges and

n . . . . a)\bs
(2) pairwise dlstances,&'%wpL s -3 = (j\l)

e 2n — 3 variables 4~ =7
= @equations l’"/(v“/” U

2 i,
A B C D
NON-ADDITIVE AT0 22 2 5
otherwise =) cla 3 o0 2
Dl 2 2 2 0

Solution not always possible forn > 3

e ————




Small Additive Distance Problem

Small Additive Distance Phylogeny Problem:

Given n X n distance matrix D = [d; ;] and unwei tree T with
n leaves, determine edge weights such that'd;(i,j) = d

L]
=g — _J
D V| W| X |y | z
R
v|O0]|10]|17 | 16 | 16
’fv\\’“&
) 2 w 0 |15 (14 | 14
X 0 9 | 15
y 0 | 14

Z 0




Small Additive Distance Problem

V| W|X |y | z
v | 0 |10]17 |16 | 16
w 0 |15 |14 | 14
X 0| 9 |15

14

\(&viﬁ 010 (zux)

Y] pes

T' T

Z9



Small Additive D|stan3e Problem
C)(b( v =-(~0{ Y
0((7(/;()

?( \IZ =
W -
CAG’L;L‘)X -
X|VYy | Z WA
- v | d |(o)[17 [[T6TT6 y M Find ne/ghbors\t/ w 4
—D— 01115 |14 [ 14 = (common parent)
25q #2802
z 0 |3 ¢ L

@ XYy | z Dax = V% (dux + dux— d) = 11 1’4
al O |[11]10 10 ~ *"'
(D;) X O 9 |15 dalz%(dvy"'dwy_de) - @
y 14 daz=%(dvz+dwz—de) - IO
Z 0 -~




Small Additive Distance Problem

a | x|y | z| Neighbors x, y
a| o0 |[11]10]10 y (common parent)
D, | X 0 [(9)]|15 h
y o4l ]
z 0 ©

“%.




Small Additive Distance Problem

X| ¥y |2 Neighbors b, z
= 11110110 Y, |° (common parent)
1 \
D1 X 0|9 5 b3
Y 1 z \
z 0 7 c N\& ‘4 —w
P
d(a,c)=3 6 y
d(b, c) =d(a, b)-d(a, c)=3
== D3 d(c, z) = d%?,‘z) —d(a,c)=7
a 6 | 10 d(b, x) =d(a, x) —d(a, b) =5
D, a|C| dby=d@ay)-d@ab)=4
d(a, w)=d(z,w)—-d(a,z)=4
b 0 03 d(a, v) = d(z, v) - d(a, z) = 6
z 0 Correct!!! -




Small Additive Distance Problem

1.

Find neighboring leaves i and j with parent k

2. Remove the rows and columns of i and j

Add a new row and column corresponding to k, where the
distance from k tq any other leaf m is computed as
ﬁ C’_’ZA»J(.,

n ot
o okhe 0 ~f o £)
dk"‘ . (di,m'l'dj,m_di,j) /

m 2
[a—

Repeat steps 1-3 until tree has only two vertices

48



A Small and a Large Problem

Small Additive Distance Phylogeny Problem:
Given n X n distance matrix D = [d; ;] and unweighted tree

n leaves, determine edge weights such that d+(i,j) = d

T with

L,j

Large Additive Distance Phylogeny Problem:

Given n X n distance matrix D = [d; ;], find tree T with
n leaves and edge weights such that d(i,j) = d

L,J

Both problems can be solved in polynomial time




Large Additive Distance Phylogeny Problem

ldea: find neighboring leaves by simply selecting pair of closest leaves

W=4 Loodes

adhdi e WRONG!
i|j| k| I © . /@
i 0 @ 21 | 22 \
j 0 [(i2) 13 —C
k 0 @ 2 \
/ 0 T T O

i and j are neighbors, but (d;= 13) > (d; = 12).

Finding a pair of neighboring leaves is a nontrivial problem!

50




Degenerate Triples &2?%

A degenerate triple is a set of three distinct elements
L,j, k€ [n]suchthatd; ; +d;, =d;

| AlB|C|D
AO%_JS?
C 0 | 7
[ D 0

Element j in a degenerate triple (i, ], k) lies* on the
evolutionary path fromito k

*or is attached to this path by an edge of length O




Degenerate Triples can be Removed

A degenerate triple is a set of three distinct elements
L,j,k € [n]suchthatd; ; +d;, =d;

Alc|D 4
Al o 7 @Z/Q ‘@ @
C 0| 7 %
D 0

Element j in a degenerate triple (i, ], k) lies* on the
evolutionary path from i to k

*or is attached to this path by an edge of length O




Looking for Degenerate Triples

If distance matrix D does not have a degenerate triple, one can
create one by shortening all hanging edges

W )
(A,B,(.)
(A, 0 )

\
Trimming
0 =1
Parameter

A C D 2 2 1
A0 & 8 7 0 QA2 0
‘B 2 0 6 5 T @ 3 0
C 8 6 0 7 y
D 7 5 7 0 T

Decrease entries in matrix D by 20




Additive Phylogeny

* |If there is no degenerative triple:

e Reduce all hanﬁing edges by the same
amount g, so that all pairwise

czzligtances in the matrix are reduced by

* This process will eventually collapse
one of the leaves (when 0/equals the
length of the shortest hanging edge),
forming a degenerate triple (i, J, Ig)
and reducing the size of the distance
matrix D

* The attachment point for j can be
recovered in the reverse
transformations by saving d; ; for
each collapsed leaf.




Additive Phylogeny

AdditivePhylogeny(D)
if D is a 2 x 2 matrix
T =tree of a single edge of length D, ,
return T
if D is non-degenerate

Compute trimming parameter 6
Trim(D, 6)
Find a triple j, j, k in D such that D; + Dy = Dy
x=Dj
Remove jt row and jt" column from D
T = AdditivePhylogeny(D).
Add a new vertex v to T at distance x from i to k

Add j back to T by creating an edge (v,j) of
length O

foreveryleaf /inT
if distance from / to v in the tree # D),
output “matrix is not additive”
return
Extend all “hanging” edges by length 6
return T
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Outline

* Four point condition
* Neighbor joining

Reading:
e Chapter 10.2 and 10.5-10.8 in Jones and Pevzner



Additive Distance Matrices

ro

Matrix D is  mmmmd> A
ADDITIVE if there B2 0 4 4
exists a tree T with D4 4 2 0
di{T) = D;

B
NON-ADDITIVE 3
otherwise =) 3

This is a constructive definition

Question: Can we characterize
set of additive matrices?




Four Point Condition (Zaretskii 1965, Buneman 1971)

Four point condition of matrix D = [d; ;]:
Every four leaves (quartet) can be labeled as (i, j, k, [) such that

Three sums: @ﬁ\\@ Dy
1. di,j + dk,l 2 t 3 t
2 di,+d; 2 and 3 representthe
2 ’ d]’ same number: @ 1 represents a
L AT j.k (length of all edges) 1 smaller number:
+ 2 * (length middle @ 2 (length of all edges)
) edge) H — (length middle
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. o C o ¢ “.
Four Point Condition g >—=< y)

—» Four point condition of matrix D = [d, ;]:

Every four IeWet) can be labeled as (i, j, k, l) such that
dij+d, €dig+dy=di +dg o

s dpo < g g 4V At da L€ dig ot
/ ’ /// /+ Apl € dig « i

W4 Yk aﬂm o Aot € gt oy
If two leaves are the same, four point condition is triangle inequality

(e.g. set%«qv) (7 =

Four point condition generalizes triangle inequality and defines a
subset of distances, namely additive distances




Four Point Condition: Theorem

Every four leaves (quartet) can be labeled as (i, j, k, |) such that
di,j + dk,l S di,k ~+ dj,l — di,l + dj,k

Theorem: An n X n matrix D is additive if and only if the fob; point condition
holds for every quartet (i, j, k, 1) € [n]*




Four Point Condition: Theorem

Every four leaves (quartet) can be labeled as (i, j, k, |) such that
di,j + dk,l S di,k ~+ dj,l — di,l + dj,k

Theorem: An n X n matrix D is additive if and only if the for point condition
holds for every quartet (i, j, k, 1) € [n]*

Proof: (=>) Since D is additive, thereisatree T P~ A K
such thatd; ; = dr(i,j) forall (i,j) € n®. Let N As /
(i,J, k, 1) be a quartet. Assume w.l.o.g. that i, j / \

and k, [ are neighbors. Define A, as illustrated.




Four Point Condition: Theorem

Every four leaves (quartet) can be labeled as (i, j, k, |) such that
di,j + dk,l S di,k ~+ dj,l — di,l + dj,k

_ &=

Theorem: An n X n matrix D is additive if and only if the for point condition
holds for every quartet (i, j, k, 1) € [n]*

Proof: (=>) Since D is additive, there is a tree T i \, A, K
such that d; ; = dr(i,j) for all (i,j) € n®. Let As
(i,j, k, 1) be a quartet. Assume w.l.o.g. that i,

and k, [ are neighbors. Define A, as illustrated. J

\, N T
b‘i 4 W * >‘f) t ( Mg 81X,

di,k ~+ dj,l —_ (41 ~+ 2,3 + /14) ~+ (/12 + /13 ~+ 2,5) — di,l + dj,k
> (A +42) + (A4 +A5) =d;j +dy




Four Point Condition: Theorem

Every four leaves (quartet) can be labeled as (i, j, k, |) such that
di,j + dk,l S di,k ~+ dj,l — di,l + dj,k

Theorem: An n X n matrix D is additive if and only if the for point condition
holds for every quartet (i, j, k, 1) € [n]*

Proof: (<=) Assume four point condition holds. Need an algorithm to
construct T. AdditivePhylogeny(T) is one such algorithm®*. Neighbor joining is
another algorithm.

*we have not proved correctness nor shown how to correct




Additive Distance Matrix

Four point condition of matrix D = [d, ;]:
Every four leaves (quartet) can be labeled as (i, j, k, [) such that
di,j + dk,l S di,k —+ dj,l — di,l + dj,k

Theorem: Let D be an n X n matrix. The following statements are
equivalent.

1. Matrix D is additive.

2. There exists a unique tree T (modulo isomorphism) s.t. d; ; =
d-(i,}) for all (i,j) € n.

3. Four point condition holds for every quartet (i, j, k, 1) € [n]*.




Outline

* Neighbor joining

Reading:
e Chapter 10.2 and 10.5-10.8 in Jones and Pevzner



Distance Based Phylogeny Problem

Large Additive Distance Phylogeny Problem:
Given n X n matrix D = [d, ;], find tree,I’ with n leaves and

edge weights such that max _|dr(i,j)|— d; ;| is minimum.
(i,j)€[n]? -

\\D__};_j

= O

Equivalently, find additive matrix(D’ glosest to input matrix

XD
— ~

0= D



Neighbor Joining Algorithm (Saitou and Nei 1987)

s

 Constructs binary unrooted trees.

* Recall: leaves a and b are neighborsqﬁ - Constructs binary unrooted trees.
. * Recall: leaves a and b are neighbors
if they have a common parent

if they have a common parent

e Recall: closest leaves are not
necessarily neighbors

* Recall: closest leaves are not “ NJ: Find pair of leaves that are
necessarily neighbors

other leaves
* NJ: Find pair of leaves that are
“close” to each other but “far” from

other leaves

Two advantages: (1) reproduces correct tree for additive matrix,
and (2) otherwise gives good approximation of correct tree




Distance Trees as Hierarchical Clustering

Leaves = Data points.

Data points clustered/groupedinto
hierarchyaccording to some
distance criterion.

68



Distance Trees as Hierarchical Clustering

Leaves = Data points.
Data points clustered/groupedinto @ .

hierarchyaccording to some

distance criterion.

i
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Distance Trees as Hierarchical Clustering

. Hierarchical Clustering (D, n)

1

2

3

4.
)

6.
@

8.

9.

10.
11.

Form n clusters each with one element
Construct a graph T by assigning one vertex to each cluster
while there is more than one cluster
Find the two closest clusters C; and G,
Merge C; and C, into new cluster C with [C;[ +/C,/ elements
Compute distance from C to all other clusters
Add a new vertex Cto T and connect to vertices C; and C,
Remove rows and columns of D corresponding to C; and C,
Add a row and column to D corresponding to the new cluster C

return T

Selection criterion: distance
between clusters affects
clustering!

®

@o—
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Neighbor Joining: Selection Criterion Japt: mekixD
ud.: O0.Y + o3 +40,6= \. & ‘({\«\( {((ﬂ_(u‘kfov-_

A ‘:I L Let C={1, ..., n} be currentclusters/leaves.
3
Define:fu; 3 Y, D(i, k).
0.1 0.1 0.1 N , ,
- Intuitively, u; measures separation of i from other
leaves.

Goal: Minimize D(j, j) andlmaximize u,-+Tj_]

0.4 0.4 Solution: Find pair (i, j) that minimizes:

D SD(i:?j) = @ E(_ii)— Uj— u;

T DR S ¥ WA — c,,(-s-u;)

Te ¢ 03 0] Claim: Given additive matri
2 D 'll m 4 Sp(x, ¥) = min Sp(i, j) if and only if xand y are neighbors

- 3 060 o in tree T with d;= D.
3 0. /4 )
(1 0,6 0,3 OeYO/
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Neighboring Joining: Algorithm

Initialization:
‘ Form n clusters C;, G, ..., C,, one for each leaf node.

Define tree T to be the set of leaf nodes, one per sequence.

Iteration: (Dis m x m)
Pick i, j such that Sy(i, j) =(m — 2) D(j, j) — u;— u; is minimal.
P ———
Merge iand jinto new node [j] in T.
Assign length % (D(j, j) + 1/(m-2) (u; —u;)) to edge (i, [i] )
— p . /
Assign length % ( D(i, j) + 1/(m-2) (u;— u;)) to edge (j [i] )

Remove rows and columns fron'@corresponding toiand j
PEEEEEEEE—

Add row and column to D for new verteX [jj

Set D( [ij], m) = % [ D(i, m)+ D(j, m)— D(i,)]

¢
N

ATen‘nination:
When only one cluster

Question: Does this create rooted or unrooted trees?
v ——
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Advantages of Neighbor Joining

ﬂLL'\ (7/"—' (e

Theorem: Let D be an n X n matrix. If matrix ) is additive
then neighbor joining produces the unique phylogenetic

tree T (modulo isomorphism) such that d; ; = dr (i, ) for all
(i,j) € n*.

Theorem: Let D be an n X n matrix. If there exists an additive
matrix D’ such that [D — D'[,, < 0.5 then neighbor joining
applied to D reconstructs the unique tree T (modulo
isomorphism) such that d; ; = dr (i, ) forall (i, ) € n4.

Atteson 1991
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summary

* Recap: RNA Secondary Structure Prediction
* Phylogenetics introduction

* Hierarchical clustering

* Additive distance phylogeny

* Four point condition

* Neighbor joining

Reading:
* Chapter 10.2 and 10.5-10.8 in Jones and Pevzner



