CS 466 Introduction to Bioinformatics Lecture 13

Mohammed El-Kebir

October 9, 2020

Course Announcements

Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Wednesdays, 3:15-4:15pm

TAs:

- Sarah Christensen (sac2) - Mondays, $3-4 \mathrm{pm}$
- Wesley Wei Qian (weiqian3) - Fridays, 9-10am

Outline

- RNA secondary structure

Reading:

- Topics are not in Jones and Pevzner book but in lecture notes and slides [Based on Chapter 10 in "Biological sequence analysis" by Durbin et al.]

Central Dogma of Molecular Biology

Three fundamental molecules:

1. DNA

Information storage.
2. RNA

Old view: Mostly a "messenger".
New view: Performs many important functions, through 3-D structure!

3. Protein

Perform most cellular functions
(biochemistry, signaling, control, etc.)

DNA \rightarrow RNA \rightarrow Protein

- Single-stranded

- A (adenine)
- C (cytosine)
- U (uracil)
- G (guanine)
- Can fold into structures due to nucleotide complementarity. A <--> U, C <--> G
- Comes in many flavors:
mRNA, rRNA, tRNA, tmRNA, snRNA, snoRNA, scaRNA, aRNA, asRNA, piwiRNA, etc.

RNA - Nucleotide Complementarity

RNA can fold into structures due to nucleotide complementarity:
A <--> U and G <--> C

Adenosine (A)
A <--> U (2 hydrogen bonds) is slightly weaker than G <--> C (3 hydrogen bonds)

G <--> U also observed but not as stable

transfer RNA (tRNA) Secondary Structure

http://bioinfo.bisr.res.in/project/crat/pictures/codon.jpg
RNA

RNA Secondary Structure Elements

Nesting and Pseudoknot

Base pairs (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are nested provided

$$
i<i^{\prime}<j^{\prime}<j \text { or } i^{\prime}<i<j<j^{\prime}
$$

Base pairs (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ form a pseudoknot provided

$$
i<i^{\prime}<j<j^{\prime} \quad \text { or } i^{\prime}<i<j^{\prime}<j
$$

Most RNA molecules consist of nested base pairs

Nesting and Pseudoknot - Examples
Nesting
Pseudoknot
$5^{\prime}-\mathrm{GCGGAUUCUGCCCCAAUUCGCACCA-3}$
$5^{\prime}-\operatorname{UUCCGAAGCUCAACGGGAAAAUGAGCU-3'}$

C•G
G•C
G•U
A•U
U•A
U•A
C C
$\mathrm{U}_{\mathrm{C}} \mathrm{C}^{\mathrm{C}}$

representation

A
C
U
C
A
G•C
C•G
C•G
U•G
U•AAAAUGAGCU-3'
5'

Nesting and Pseudoknot - Examples

Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity: A <--> U and G <--> C

Secondary structure is determined by a set of non-overlapping complimentary base pairs

Nussinov Algorithm
RNA can fold into structures due to nucleotide complementarity:
A <--> U and G <--> C

Secondary structure is determined by a set of non-overlapping complimentary base pairs

Question: How to find maximum number of such pairs?

$$
\text { matching } \gamma
$$

is a subset of elses that are pairwise dijgant cardiuclity
matching

Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity:
A <--> U and G <-->C

Secondary structure is determined by a set of non-overlapping complimentary base pairs
Question: How to find maximum number of such pairs?

Need to constrain space of feasible solutions!

Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity:

$$
A<-->U \text { and G <--> C }
$$

Secondary structure is determined by a set of non-overlapping complimentary base pairs
Question: How to find maximum number of such pairs?

Need to constrain space of
feasible solutions!

SIAM J. APPL, MATH.
© Society for Industrial and Applied Mathematics
Vol. 35, No. 1, July 1978

ALGORITHMS FOR LOOP MATCHINGS*

RUTH NUSSINOV, \dagger GEORGE PIECZENIK, \ddagger JERROLD R. GRIGGS AND DANIEL J. KLEITMAN§

Problem: Given RNA sequence $\mathbf{v} \in\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}^{n}$, find a pseudoknot-free secondarv structure with the maximum number of complementary base pairings

Nussinov Algorithm - Dynamic Programming

Problem: Given RNA sequence $\mathbf{v} \in\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}^{n}$, find a pseudoknot-free secondary structure with the maximum number of complementary base pairings
$\bar{V}=5^{\prime}-\mathrm{GC}^{2} \mathrm{C}^{3} 4 \mathrm{GAUUCUGCCCCAAUUCGCACCA}-3^{\prime}$

Nussinov Algorithm - Dynamic Programming

Nussinov Algorithm - Dynamic Programming

Problem: Given RNA sequence $\mathbf{v} \in\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}^{n}$, find a pseudoknot-free secondary structure with the maximum number of complementary base pairings

Let $s[i, j]$ denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_{i}, \ldots, v_{j}

Nussinov Algorithm - Dynamic Programming

Problem: Given RNA sequence $\mathbf{v} \in\{A, U, C, G\}^{n}$, find a pseudoknot-free secondary structure with the maximum number of complementary base pairings

$$
\Gamma=\{(A, U),(U, A),(C, G),(G, C)\}
$$

Let $s[i, j]$ denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_{i}, \ldots, v_{j}

j unpaired

i unpaired

(4)

bifurcation

$$
\begin{aligned}
& \text { if } i \geq j, \quad \text { base cara } \\
& \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma,(1) \\
& \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma, \underline{\left(1^{*}\right)} \\
& \text { if } i<j, \\
& \text { if } i<j, \\
& \text { if } i<j,
\end{aligned}
$$

Nussinov Algorithm - Dynamic Programming

Problem: Given RNA sequence $\mathbf{v} \in\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}^{n}$, find a pseudoknot-free secondary structure with the maximum number of complementary base pairings

Let $s[i, j]$ denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_{i}, \ldots, v_{j}

$$
s[i, j]=\max \left\{\begin{array}{l}
0 \tag{4}\\
s[i+1, j-1]+1 \\
s[i+1, j-1] \\
s[i+1, j] \\
s[i, j-1] \\
\max _{i<k<j}\{s[i, k]+s[k+1, j]\}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if } i \geq j, \\
& \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma, \text { (1) } \\
& \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma, \text { (1*) } \\
& \text { if } i<j, \\
& \text { if } i<j, \\
& \text { if } i<j,
\end{aligned}
$$

(4)

i, j pair i unpaired j unpaired bifurcation

Question:

Which case is redundant?

Develop Intuition
solution $n=23$

$$
s[1, n]
$$

$\rightarrow 0$
\square

\qquad

$$
s[1,23]=5
$$

Develop Intuition

$\begin{array}{lllllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23\end{array}$

0	5																						G	
0	0																						C	
0	0	0	7																	1			U	
0	0	0	0	\checkmark															\cdots				C	
0	0	0	0	0																			G	
0	0	0	0	0	0																		G	
0	0	0	0	0	0	,																	G	
0	0	0	0	0	0	0	0																U	
0	0	0	0	0	0	0	0	0	V														U	
0	0	0	0	0	0	0	0	0	0	∇													C	10
0	0	0	0	0	0	0	0	0	0	0	\checkmark												C	11
0	0	0	0	0	0	0	0	0	0	0	0	\checkmark											C	12
0	0	0	0	0	0	0	0	0	0	0	0	0											U	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0										A	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		,							U	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		,						U	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		,		-			C	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						A	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0					A	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				G	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			A	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	A	G	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		C	

Nussinov Algorithm - Traceback Step

[^0]
Nussinov Algorithm - Example

	\mathbf{G}	\mathbf{G}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{U}	\mathbf{C}	\mathbf{C}
\mathbf{G}	0								
\mathbf{G}	0	0							
\mathbf{G}	0	0	0	0					
A	0	0	0	0					
A	0	0	0	0	0				
A	0	0	0	0	d	0	0	0	

$$
s[i, j]=\max \begin{cases}0, & \text { if } i \geq j, \\ s[i+1, j-1]+1, & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma,(1) \\ s[i+1, j-1], & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma,\left(1^{*}\right) \\ s[i+1, j], & \text { if } i<j, \\ s[i, j-1], & \text { if } i<j, \\ \max _{i<k<j}\{s[i, k]+s[k+1, j]\}, & \text { if } i<j,\end{cases}
$$

Nussinov Algorithm - Example

	G	G	G	A	A	A	U	C	C
G	0	0							
G	0	0	0						
G	0	0	0	0					
A	0	0	0	0	0				
A	0	0	0	0	0	0			
A	0	0	0	0	0	0	1		
U	0	0	0	0	0	0	0	0	
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

$$
s[i, j]=\max \begin{cases}0, & \text { if } i \geq j, \\ s[i+1, j-1]+1, & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma, \quad \text { (1) } \\ s[i+1, j-1], & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma, \quad \text { (1*) } \\ s[i+1, j], & \text { if } i<j, \\ s[i, j-1], & \text { if } i<j, \\ \max _{i<k<j}\{s[i, k]+s[k+1, j]\}, & \text { if } i<j,\end{cases}
$$

Nussinov Algorithm - Example

	G	G	G	A	A	A	U	C	C
G	0	0	0						
G	0	0	0	0					
G	0	0	0	0	0				
A	0	0	0	0	0	0			
A	0	0	0	0	0	0	1		
A	0	0	0	0	0	0	1	1	
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

$$
s[i, j]=\max \begin{cases}0, & \text { if } i \geq j, \\ s[i+1, j-1]+1, & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma, \text { (1) } \\ s[i+1, j-1], & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma, \text { (1*) } \\ s[i+1, j], & \text { if } i<j, \\ s[i, j-1], & \text { if } i<j, \\ \max _{i<k<j}\{s[i, k]+s[k+1, j]\}, & \text { if } i<j,\end{cases}
$$

Nussinov Algorithm - Example

	G	G	G	A	A	A	U	C	C
G	0	0	0	0					
G	0	0	0	0	0				
G	0	0	0	0	0	0			
A	0	0	0	0	0	0	1		
A	0	0	0	0	0	0	1	1	
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

Nussinov Algorithm - Example

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

Nussinov Algorithm - Example

$$
s[i, j]=\max \begin{cases}0, & \text { if } i \geq j, \\ s[i+1, j-1]+1, & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma, \text { (1) } \\ s[i+1, j-1], & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma, \text { (1*) } \\ s[i+1, j], & \text { if } i<j, \\ s[i, j-1], & \text { if } i<j, \\ \max _{i<k<j}\{s[i, k]+s[k+1, j]\}, & \text { if } i<j,\end{cases}
$$

G	G	G	A	A	A	U	C	C
G	$($	$($	$($			$)$	$)$	$)$

Nussinov Algorithm - Example With Bifurcation

Nussinov Algorithm - Alternative Solutions

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

Does this make sense?

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

A 4

Guanine (G)
Cytosine (C)

Does this make sense?
12345678

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

Adenosine (A)
GCACGAC G

GCACGACG
(). ((.))

Extension: Hairpin Loops with Minimum Length ℓ

A

G

C
u

Guanine (G)

Extension: Hairpin Loops with Minimum Length ℓ

bifurcation

$$
s[i, j]=\max \begin{cases}0, & \text { if } i+\ell \geq j, \tag{1}\\ s[i+1, j-1]+1, & \text { if } i+\ell<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma, \\ s[i+1, j-1], & \text { if } i+\ell<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma, \\ s[i+1, j], & \text { if } i+\bar{\ell}<j, \\ s[i, j-1], & \text { if } i+\ell<j, \\ \max _{i+\ell<k<j}\{s[i, k]+s[k+1, j]\}, & \text { if } i+\bar{\ell}<j,\end{cases}
$$

RNA Secondary Structure Prediction in Practice

Rather than maximize number of compl. base pairs, minimize free energy (FE)
Zuker's algorithm: Dynamic programming w/ three matrices similar to affine gap penalties

- $V(i, j)$: FE of optimal structure of s[i..j] assuming i,j form a base pair
- VBI(i, j): FE of optimal structure of $s[i . . j]$ assuming i, j closes a bulge or internal loop

- VM(i,j): FE of optimal structure of $s[i . . j]$ assuming i, j closes a multibranch loop

> | FE minimization with pseudoknots is NP-hard |
| :--- |
| [Lyngso and Pedersen, RECOMB 2000] |

Summary

- RNA is a sequence of four bases/nucleotides $\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}$
- RNA folds into structures due to base/nucleotide complementarity
- A <--> U and C <--> G
- RNA secondary structure is defined by a set of non-overlapping Matching
complementary nucleotide pairs
- Pseudoknot-free structures have no "crossing" pairs
- Nussinov Algorithm: Dynamic programming to find pseudoknot-free structure with maximum number of complementary nucleotide pairs

Reading:

- Topics are not in Jones and Pevzner book but in lecture notes and slides [Based on Chapter 10 in "Biological sequence analysis" by Durbin et al.]

[^0]: bifurcation

