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1 RNA Secondary Structure Prediction

As described in Lecture 1, the central dogma of molecular biology states that DNA is tran-
scribed into RNA, which in turn is translated into protein. This seems to imply that RNA
is simply an intermediary molecule, whose sole role is to facilitate translation of protein by
migrating from the cell nucleus (where DNA resides) to the ribosome (protein factory). In-
deed, RNA molecules that are translated at a ribosome are called messenger RNAs (mRNA),
reflecting their passive roles. However, other types of RNA molecules also exist that are non-
coding, i.e. not translated into proteins. Such RNA molecules have complicated 3D spatial
structures to achieve their biological function. In this lecture, we will introduce a problem
statement for inferring RNA 2-D structure (also called secondary structure) from a 1-D RNA
sequence, by means of an optimization problem. We will present the Nussinov algorithm for
solving this problem.

1.1 Background

There are four RNA nucleotides, i.e. Σ = {A,U,G,C}. When two RNA nucleotides are close
to each other in space they can form a chemical bond. We consider only two types of bonds:
A − U and G − C. The latter (G − C) is slightly stronger than the former (A − U) with
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three hydrogen bonds instead of two. The key concept is that nucleotide pairings lead to
RNA spatial structure.

1.2 Problem Statement

Let v ∈ Σn be an RNA sequence. Each nucleotide can participate in at most one pairing.
Per the previous section, there are four complementary nucleotide pairings (A,U), (U,A),
(G,C) and (C,G). The secondary structure P of an RNA molecule is defined by a set of
non-overlapping complementary nucleotide pairings. That is, P ⊂ {(i, j) | 1 ≤ i < j ≤ n}
such that for all distinct pairs (i, j), (i′, j′) ∈ P it holds that i ∕= i′, i ∕= j′, j ∕= i′ and
j ∕= j′. Observe that |P | is the number of complementary nucleotide pairings in secondary
structure P .

Consider two nucleotide pairs (i, j) and (i′, j′) such that i < j and i′ < j′. We say that
(i, j) and (i′, j′) are nested if and only if either i < i′ < j′ < j or i′ < i < j < j′. Conversely,
(i, j) and (i′, j′) form a pseudoknot if and only if either i < i′ < j < j′ or i′ < i < j′ < j. A
secondary structure P is pseudoknot free provided that no two pairs in P form a pseudoknot.

We have the following problem.

Problem 1. Given RNA sequence v ∈ Σn, find a pseudoknot-free secondary structure P
such that |P | is maximum.

1.3 Nussinov Algorithm

Let s[i, j] denote the maximum number of pseudoknot-free complementary nucleotide pair-
ings in subsequence vi, . . . , vj. We wish to compute s[1, n]. Clearly, there is optimal substruc-
ture. To see this, think about an optimal secondary structure P ∗ with length |P ∗| = s[1, n].
We distinguish the following cases.

1. (1, n) ∈ P ∗, meaning that v1 and vn are complementary nucleotides and part of the
optimal pseudoknot-free secondary structure P ∗. In this case s[1, n] = s[2, n− 1] + 1.

2. (1, n) ∕∈ P ∗, meaning that either v1 and vn are not complementary nucleotides or
that they are complementary but not part of the optimal pseudoknot-free secondary
structure P ∗. In this case, we can distinguish four additional cases.

(a) Neither v1 nor vn are part of complementary base pairing in P ∗. In this case,
s[1, n] = s[2, n− 1].

(b) v1 is not part of a complementary base pairing in P ∗. In this case, s[1, n] = s[2, n]

(c) vn is not part of a complementary base pairing in P ∗. In this case, s[1, n] =
s[1, n− 1].

(d) v1 and vn are both part of a complementary base pairing in P ∗ (but not with each
other). In this case, there exists a 1 < k < n such s[1, n] = s[1, k] + s[k+1, n]. In
other words, we split the sequence into two parts (i.e., a bifurcation).
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We can apply the same case analysis on each of the resulting subcases. Observe, that we are
“peeling off” subproblems, in line with optimal substructure.

Let Γ = {(A,U), (U,A), (G,C), (C,G)}. We can write down the following recurrence

s[i, j] = max






0, if i ≥ j,

s[i+ 1, j − 1] + 1, if i < j and (vi, vj) ∈ Γ,

s[i+ 1, j − 1], if i < j and (vi, vj) ∕∈ Γ,

s[i+ 1, j], if i < j,

s[i, j − 1], if i < j,

maxi<k<j{s[i, k] + s[k + 1, j]}, if i < j,

(1)

where 1 ≤ i, j ≤ n.
Thus, we can view s as an n × n table, whose cells in the lower triangle are initialized

with 0 (i.e., s[i, j] = 0 for all 1 ≤ j ≤ i ≤ n). From the recurrence, we see that each entry
s[i, j] where 1 ≤ i ≤ j ≤ n depends on entries on the diagonals below it. Thus, we can
fill out the table diagonally starting from j = i + 1. Cell s[1, n] will contain the maximum
number of complementary nucleotide pairings of any pseudoknot-free secondary structure.
Writing down the pseudocode for filling out the table is left as an exercise to the reader.

1.4 Traceback

How do we reconstruct the optimal pseudoknot-free secondary structure P ∗ from a filled out
table s? We can do this recursively starting from s[1, n]. See slides for alternative pseudocode
using a stack.

1.5 Running Time Analysis

The space complexity is dominated by storing the complete table s and is thus O(n2). To
see what the running time of filling out the table is, observe that each entry s[i, j] must be
computed. The time required for computing s[i, j] is dominated by the last case, where we
scan k ∈ {i+1, . . . , j− 1}. Observe that each triple (i, j, k) where 1 ≤ i < k < j ≤ n will be
considered exactly once when filling out s. Thus, the running time is bound by the number
of such triples, which is


n
3


= O(n3).
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