CS 466 Introduction to Bioinformatics Lecture 9

Mohammed El-Kebir

October 1, 2018

Course Announcements

Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Mondays, 3:15-4:15pm

TA:

- Anusri Pampari (pampari2)
- Office hours: Thursdays, 11:00-11:59am in SC 4105

Homework 2 due Oct. 5 by 11:59pm
Midterm on Oct. 10, 7-9pm, 1310 DCL

Outline

- Multiple sequence alignment
- Exact algorithm
- Sum-of-pairs (SP) score
- Carillo-Lipman
- Heuristic approaches

Reading:

- Material based on Chapter 14.6 in book "Algorithms on Strings, Trees and Sequences" by Dan Gusfield

Motivation

Simultaneous alignment of multiple (>2) sequences enables inference of subtle similarities that are conserved in more than two species

Q5E940 BOVIN RLAO HUMAN RLAO MOUSE RLD $\overline{\mathrm{A}} 0$ _RAT RLAO_C $\bar{H} I C K$ RLAO ${ }^{-}$RANSY
Q7ZUG3_BRARE RLA0 ${ }^{-}$ICT PU RLAO DROME RLAO ${ }^{-}$DICDI Q54LP0 ${ }^{-}$DICDI RLA0_PLAF8 RLA0_SULAC RLAO ${ }^{-}$SULTO RLA0 ${ }^{-}$SULSO RLA0 ${ }^{-}$AERPE RLAO PYRAE RLA0 - METAC RLAO_METMA RLA0_ARCFU RLA0_METKA RLA0_METTH RLAO METTL RLAO-METVA RLAO-METJA RLAO ${ }^{-}$PYRAB RLAO_PYRHO RLA0_PYRFU RLAO PYRKO RLAO HALMA RLAO ${ }^{-}$HALVO RLAO-HALSA RLA0_HALSA RLA0_THEAC RLAO -THEVO RLAO_PICTO ruler 1 -----MAHVAEWKKKEVQE LHDL IKGYEVVGI ANLADIPARQLQKMRQT LRDS-ALIRMSKKTLIS LALEKAGRE L--ENVD -----MITAESE HKIAPWKIE EVNKLKELLKNGQIVALVDMMEVPARQLQEIRDKIR-GTMTLKMSRNTLIERAIKEVAEETGNPEFA -------MIDAKSE HKIAPWKIE EVNALKELLKSANVIAL IDMMEVPAVQLQE IRDK IR-DQMTLKMSRNTLIKRAVEEVAEETGNPEFA -------METKVKAHVAPWKIE EVKTLKGLIKSKPVVAIVDMMDVPAPQLQEIRDKIR-DKVKLRMSRNTLIIRALKEAAEE LNNPKLA ------------MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIE LAIKKAAQE LGKPELE ------------MAHVAEWKKKEVEELAKLIKSYPVIAL VDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIE LAIKKAAKE LGKPELE ------------MAHVAE WKKKEVEELANLIKSYPVVAL VDVSSMPAYPLSQMRRLIRENNGLLRVSRNTLIE LAIKKVAQE LGKPELE -MAHVAEWKKKEVEELANIIKSYPVIALVDVAGVPAYPLSKMRDKLR-GKALLRVSRNTLIELAIKRAAQE LGQPELE ----MSAESERKTETIPEWKQE EVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRDLHGT-AELRVSRNTLLERALDDVD-----DGLE ----MSESEVRQTEVIPQWKRE EVDELVDF IES YE SVGVVGVAGIPSRQLQSMRRE LHGS - AAVRMSRNTLVNRALDEVN-----DGFE ----MSAEEQRTTEEVPEWKRQEVAELVDLLETYDSVGVVNVTGIPSKQLQDMRRGLHGQ-AALRMSRNTLLVRALEEAG-----DGLD -----------MKEVSQQKKELVNEITQRIKASRSVAIVDTAGIRTRQIQDIRGKNRGK-INLKVIKKTLLFKALENLGD----EKLS ------MRKINPKKKE IVSELAQDITKSKAVAIVDIKGVRTRQMQDIRAKNRDK-VKIKVVKKTLLFKALDSIND----EKLT ----------MTEPAQWKIDFVKNLENE INSRKVAAIVSIKGLRNNEFQKIRNSIRDK-ARIKVSRARLLRLAIENTGK----NNIV . 10 . 20....... 30

50 .
.60.
70.
. 80 .

Multiple Sequence Alignment (MSA)

A multiple sequence alignment \mathcal{M} between k strings $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a $k \times q$ matrix, where $q=\left\{\max \left\{\left|\mathbf{v}_{i}\right|: i \in[k]\right\}, \ldots, \sum_{i=1}^{k}\left|\mathbf{v}_{i}\right|\right\}$ such that the i-th row contains the characters of \mathbf{v}_{i} in order with spaces ' - ' interspersed and no column contains k spaces

	\mathbf{v}_{1}	A	T	-	G	C	G
	\mathbf{v}_{2}	A	-	C	G	T	-
\mathbf{n}_{3}	C						
	\mathbf{v}_{3}	A	T	C	A	C	-
		A					

Question: How to score a multiple sequence alignment?

Scoring a Multiple Sequence Alignment

\mathbf{v}_{1}	A	T	-	G	C	G	-
	\mathbf{v}_{2}	A	-	C	G	T	-
\mathbf{v}_{3}	C						
	A	T	C	A	C	-	A

Question: How to score a multiple sequence alignment?

Pairwise scoring function:

$$
\delta:(\Sigma \cup\{-\}) \times(\Sigma \cup\{-\}) \rightarrow \mathbb{R}
$$

Scoring a Multiple Sequence Alignment

\mathbf{v}_{1}	A	T	-	G	C	G	-
	\mathbf{v}_{2}	A	-	C	G	T	-
\mathbf{v}_{3}	C						
	A	T	C	A	C	-	A

Question: How to score a multiple sequence alignment?

Pairwise scoring function:

$$
\delta:(\Sigma \cup\{-\}) \times(\Sigma \cup\{-\}) \rightarrow \mathbb{R}
$$

k-wise scoring function:

$$
\delta:(\Sigma \cup\{-\})^{k} \rightarrow \mathbb{R}
$$

Outline

- Multiple sequence alignment
- Exact algorithm
- Sum-of-pairs (SP) score
- Carillo-Lipman
- Heuristic approaches

Reading:

- Material based on Chapter 14.6 in book "Algorithms on Strings, Trees and Sequences" by Dan Gusfield

Aligning Three Sequences

- Same strategy as pairwise edit distance
- Use 3-D cube, with each axis representing an input sequence
- Alignment is a path from source to sink

2-D Edit Graph

2-D vs 3-D Vertex Neighborhood

$$
(i-1, j-1) \quad(i-1, j)
$$

$$
(i-1, j-1, k-1) \quad(i-1, j, k-1)
$$

3-D Sequence Alignment

$\delta(x, y, z)$ is an entry in 3-D scoring matrix
Given three sequences each of length n, running time: $O\left(n^{3}\right)$

$$
s[i, j, k]=\max \left\{\begin{array}{l}
\left.s[i-1, j-1, k-1]+\delta\left(v_{i}, w_{j}, u_{k}\right),\right] \text { nogaps } \\
s[i-1, j-1, k]+\delta\left(v_{i}, w_{j},-\right), \\
s[i-1, j, k-1]+\delta\left(v_{i},-, u_{k}\right), \\
s[i, j-1, k-1]+\delta\left(-, w_{j}, u_{k}\right), \\
s[i-1, j, k]+\delta\left(v_{i},-,-\right), \\
s[i, j-1, k]+\delta\left(-, w_{j},-\right), \\
s[i, j, k-1]+\delta\left(-,-, u_{k}\right),
\end{array}\right] \text { one gap }
$$

3-D vs k-D Vertex Neighborhood

$$
\begin{gathered}
\left(i_{1}-1, i_{2}-1, \ldots, i_{k-1}-1, i_{k}-1\right) \\
\left(i_{1}-1, i_{2}-1, \ldots, i_{k-1}-1, i_{k}\right) \\
\left(i_{1}, i_{2}-1, \ldots, i_{k-1}-1, i_{k}-1\right) \\
\ldots \\
\left(i_{1}-1, i_{2}, \ldots, i_{k-1}, i_{k}\right) \\
\ldots \\
\left(i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}-1\right)
\end{gathered}
$$

k-D Neighborhood
($2^{k}-1$ edges)

k-D Sequence Alignment

$\delta\left(x_{1}, \ldots, x_{k}\right)$ is an entry in k-D scoring matrix
Given k sequences each of length n, running time: $O\left(2^{k} n^{k}\right)$

$$
s\left[i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}\right]=\max \left\{\begin{array}{l}
\left.s\left[i_{1}-1, i_{2}-1, \ldots, i_{k-1}-1, i_{k}-1\right]+\delta\left(\mathbf{v}_{\mathbf{1}}\left[i_{1}\right], \mathbf{v}_{\mathbf{2}}\left[i_{2}\right], \ldots, \mathbf{v}_{\mathbf{k}-\mathbf{1}}\left[i_{k-1}\right], \mathbf{v}_{\mathbf{k}}\left[i_{k}\right]\right)\right] \text { no gaps } \\
s\left[i_{1}-1, i_{2}-1, \ldots, i_{k-1}-1, i_{k}\right]+\delta\left(\mathbf{v}_{\mathbf{1}}\left[i_{1}\right], \mathbf{v}_{\mathbf{2}}\left[i_{2}\right], \ldots, \mathbf{v}_{\mathbf{k}-\mathbf{1}}\left[i_{k-1}\right],-\right) \\
\vdots \\
s\left[i_{1}, i_{2}-1, \ldots, i_{k-1}-1, i_{k}-1\right]+\delta\left(-, \mathbf{v}_{\mathbf{2}}\left[i_{2}\right], \ldots, \mathbf{v}_{\mathbf{k}-\mathbf{1}}\left[i_{k-1}\right], \mathbf{v}_{\mathbf{k}}\left[i_{k}\right]\right) \\
\vdots \\
s\left[i_{1}-1, i_{2}, \ldots, i_{k-1}, i_{k}\right]+\delta\left(\mathbf{v}_{\mathbf{1}}\left[i_{1}\right],-, \ldots,-,-\right) \\
\vdots \\
s\left[i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}-1\right]+\delta\left(-,-, \ldots,-, \mathbf{v}_{\mathbf{k}}\left[i_{k}\right]\right)
\end{array}\right] \text { one gap }
$$

Multiple Sequence Alignment - Running Time

Given 2 sequences each of length n, running time: $O\left(n^{2}\right)$

Given 3 sequences each of length n, running time: $O\left(n^{3}\right)$

Given k sequences each of length n, running time: $O\left(2^{k} n^{k}\right)$

Multiple Sequence Alignment - Running Time

Given 2 sequences each of length n, running time: $O\left(n^{2}\right)$

Given 3 sequences each of length n, running time: $O\left(n^{3}\right)$

Question: Can we align k sequences each of length n in time $O(\operatorname{poly}(n))$?

Given k sequences each of length n, running time: $O\left(2^{k} n^{k}\right)$

Multiple Sequence Alignment - Running Time

Given 2 sequences each of length n, running time: $O\left(n^{2}\right)$

Given 3 sequences each of length n, running time: $O\left(n^{3}\right)$

Given k sequences each of length n, running time: $O\left(2^{k} n^{k}\right)$

Question: Can we align k sequences each of length n in time $O($ poly $(n))$?

Let's look at a more wieldy scoring function

Outline

- Multiple sequence alignment
- Exact algorithm
- Sum-of-pairs (SP) score
- Carillo-Lipman
- Heuristic approaches

Reading:

- Material based on Chapter 14.6 in book "Algorithms on Strings, Trees and Sequences" by Dan Gusfield

Multiple Alignment Induces Pairwise Alignments

v_{1}	A	T	-	G	C	G	-
v_{2}	A	-	C	G	T	-	C
v_{3}	A	T	C	A	C	-	A

v_{1}	A	T	-	-	G	C	G		-	v_{1}	A	T	-	-	G	C	G	G	-	v_{2}	A	-		C	G	T	C	C
\mathbf{v}_{2}	A	-	C	C	G	T	-		C	v_{3}	A	T		C	A	C	-	-	A	v_{3}	A	I	+	C	A	C	A	A

Resulting columns with -/- are removed

Sum-of-Pairs (SP) Score

\mathbf{v}_{1}	A	T	-	G	C	G	-
\mathbf{v}_{2}	A	-	C	G	T	-	C
v_{3}	A	T	C	A	C	-	A

$S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ is score of induced pairwise alignment of sequences $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$

Multiple sequence alignment \mathcal{M}

	A	T	-	G	C	G				A	T			G	C	G			v_{2}	A		C		G	T	C
V_{2}	A	-	C	G	T	-			V_{3}	A	T	C			C				V_{3}	A	I	C		A	C	

$$
\mathrm{SP}-\operatorname{score}(\mathcal{M})=\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)
$$

Sum-of-Pairs (SP) Score - Example

v_{1}	A	T	G	-	C
v_{2}	A	-	G	-	C
v_{3}	A	T	C	C	C

Match score: 3
Mismatch score: 1
Gap score: $-\sigma$
Multiple sequence alignment \mathcal{M}

$$
\begin{gathered}
\text { Question: Calculate } \\
\text { SP-score }(\mathcal{M})= \\
\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)
\end{gathered}
$$

Sum-of-Pairs (SP) Score - Example

v_{1}	A	T	G	-	C
v_{2}	A	-	G	-	c
v_{3}	A	T	C	C	C

Match score: 3
Mismatch score: 1
Gap score: $-\sigma$
Multiple sequence alignment \mathcal{M}

$$
\begin{gathered}
\text { Question: Calculate } \\
\text { SP-score }(\mathcal{M})= \\
\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)
\end{gathered}
$$

We can sum over scores for the columns, ignoring -/-

Multiple Sequence Alignment Problem w/ SP-Score

A multiple sequence alignment \mathcal{M} between k strings $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a $k \times q$ matrix, where $q=\left\{\max \left\{\left|\mathbf{v}_{i}\right|: i \in[k]\right\}, \ldots, \sum_{i=1}^{k}\left|\mathbf{v}_{i}\right|\right\}$ such that the i-th row contains the characters of \mathbf{v}_{i} in order with spaces ' - ' interspersed and no column contains k spaces

MSA-SP problem: Given strings strings $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ find multiple sequence alignment \mathcal{M}^{*} with minimum value of SP-score $\left(\mathcal{M}^{*}\right)=\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ where $S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ is the score of the induced pairwise alignment of $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ in \mathcal{M}^{*}

3-D MSA-SP

$\delta(x, y, z)$ is an entry in 3-D scoring matrix
Given three sequences each of length n, running time: $O\left(n^{3}\right)$

$$
d\left[i_{1}, i_{2}, i_{3}\right]=\min \left\{\begin{array}{l}
\left.d\left[i_{1}-1, i_{2}-1, i_{3}-1\right]+\delta\left(\mathbf{v}_{\mathbf{1}}\left[i_{1}\right], \mathbf{v}_{\mathbf{2}}\left[i_{2}\right]\right)+\delta\left(\mathbf{v}_{\mathbf{1}}\left[i_{1}\right], \mathbf{v}_{\mathbf{3}}\left[i_{3}\right]\right)+\delta\left(\mathbf{v}_{\mathbf{2}}\left[i_{2}\right], \mathbf{v}_{\mathbf{3}}\left[i_{3}\right]\right)\right] \text { no gaps } \\
d\left[i_{1}-1, i_{2}-1, i_{3}\right]+\delta\left(\mathbf{v}_{\mathbf{1}}\left[i_{1}\right], \mathbf{v}_{\mathbf{2}}\left[i_{2}\right]\right)+2 \sigma \\
d\left[i_{1}-1, i_{2}, i_{3}-1\right]+\delta\left(\mathbf{v}_{\mathbf{1}}\left[i_{1}\right], \mathbf{v}_{\mathbf{3}}\left[i_{3}\right]\right)+2 \sigma \\
d\left[i_{1}, i_{2}-1, i_{3}-1\right]+\delta\left(\mathbf{v}_{\mathbf{2}}\left[i_{2}\right], \mathbf{v}_{\mathbf{3}}\left[i_{3}\right]\right)+2 \sigma \\
d\left[i_{1}-1, i_{2}, i_{3}\right]+2 \sigma \\
d\left[i_{1}, i_{2}-1, i_{3}\right]+2 \sigma \\
d\left[i_{1}, i_{2}, i_{3}-1\right]+2 \sigma
\end{array}\right] \text { one gap } . \text { two gaps }
$$

k-D MSA-SP

Computing SP-score in each case: $O\left(k^{2}\right)$ time
Given k sequences each of length n, running time: $O\left(k^{2} 2^{k} n^{k}\right)$

k-D MSA-SP

Computing SP-score in each case: $O\left(k^{2}\right)$ time
Given k sequences each of length n, running time: $O\left(k^{2} 2^{k} n^{k}\right)$

$$
d\left[i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}\right]=\min \left\{\begin{array}{l}
s\left[i_{1}-1, i_{2}-1, \ldots, i_{k-1}-1, i_{k}-1\right]+\sum_{p=1}^{k} \sum_{q=p+1}^{k} \delta\left(\mathbf{v}_{\mathbf{p}}\left[i_{p}\right], \mathbf{v}_{\mathbf{q}}\left[i_{q}\right]\right) \\
s\left[i_{1}-1, i_{2}-1, \ldots, i_{k-1}-1, i_{k}\right]+(k-1) \sigma+\sum_{p=1}^{k-1} \sum_{q=p+1}^{k-1} \delta\left(\mathbf{v}_{\mathbf{p}}\left[i_{p}\right], \mathbf{v}_{\mathbf{q}}\left[i_{q}\right]\right) \\
\vdots \\
s\left[i_{1}, i_{2}-1, \ldots, i_{k-1}-1, i_{k}-1\right]+(k-1) \sigma+\sum_{p=2}^{k} \sum_{q=p+1}^{k} \delta\left(\mathbf{v}_{\mathbf{p}}\left[i_{p}\right], \mathbf{v}_{\mathbf{q}}\left[i_{q}\right]\right) \\
\vdots \\
s\left[i_{1}-1, i_{2}, \ldots, i_{k-1}, i_{k}\right]+(k-1) \sigma \\
\vdots \\
s\left[i_{1}, i_{2}, \ldots, i_{k-1}, i_{k}-1\right]+(k-1) \sigma
\end{array}\right] \text { no gaps }
$$

Multiple Sequence Alignment Problem w/ SP-Score

MSA-SP problem: Given strings strings $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ find multiple sequence alignment \mathcal{M}^{*} with minimum value of
SP-score $\left(\mathcal{M}^{*}\right)=\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ where $S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ is the score of the induced pairwise alignment of $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ in \mathcal{M}^{*}

Question: Can we align k sequences each of length n in time $O(\operatorname{poly}(n))$?

Multiple Sequence Alignment Problem w/ SP-Score

MSA-SP problem: Given strings strings $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ find multiple sequence alignment \mathcal{M}^{*} with minimum value of SP-score $\left(\mathcal{M}^{*}\right)=\sum_{i=1}^{k} \sum_{j=i+1}^{k} S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ where $S\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ is the score of the induced pairwise alignment of $\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)$ in \mathcal{M}^{*}

Question: Can we align k sequences each of length n in time $O(\operatorname{poly}(n))$?

No, MSA-SP is NP-hard.
[WANG, L., \& JIANG, T. (2009). On the Complexity of Multiple Sequence Alignment. Journal of Computational Biology, 1(4), 337-348. http://doi.org/10.1089/cmb.1994.1.337]

Outline

- Multiple sequence alignment
- Exact algorithm
- Sum-of-pairs (SP) score
- Carillo-Lipman
- Heuristic approaches

Reading:

- Material based on Chapter 14.6 in book "Algorithms on Strings, Trees and Sequences" by Dan Gusfield

Recall: Banded Alignment

Alignment is a path from source $(0,0)$ to target (m, n) in edit graph

Constraint path to band of width k around diagonal

Running time: $\mathrm{O}(n k)$

Question: Alternative ways of constraining search space?

Constrain traceback to band of DP matrix (penalize big gaps)

Forward Dynamic Programming

Banded alignment: constraint path to polyhedron around diagonal

Alternatively: Stop computing when remaining alignment will be suboptimal

Forward Dynamic Programming

Banded alignment: constraint path to polyhedron around diagonal

Alternatively: Stop computing when remaining alignment will be suboptimal

Forward dynamic programming - think of Dijkstra's algorithm:

- Queue of unvisited vertices
- Maintain $p[i, j, k]$ shortest distance yet found from $(0,0,0)$ to (i, j, k).
- For each directed edge (i, j, k) to $\left(i^{\prime}, j^{\prime}, k^{\prime}\right)$ with cost w, set $p\left[i^{\prime}, j^{\prime}, k^{\prime}\right]=\min \left\{p\left[i^{\prime}, j^{\prime}, k^{\prime}\right], p[i, j, k]+w\right\}$

Forward Dynamic Programming

Banded alignment: constraint path to polyhedron around diagonal

Alternatively: Stop computing when remaining alignment will be suboptimal

Forward dynamic programming - think of Dijkstra's algorithm:

- Queue of unvisited vertices
- Maintain $p[i, j, k]$ shortest distance yet found from $(0,0,0)$ to (i, j, k).
- For each directed edge (i, j, k) to $\left(i^{\prime}, j^{\prime}, k^{\prime}\right)$ with cost w, set $p\left[i^{\prime}, j^{\prime}, k^{\prime}\right]=\min \left\{p\left[i^{\prime}, j^{\prime}, k^{\prime}\right], p[i, j, k]+w\right\}$

Question: Can we remove vertices from consideration based on alignment score of prefix?

Alignment Projection and SP-score

Sequences $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ each of length n

- $D(i, j, k)$ is min SP-cost of aligning $\mathbf{v}_{1}[1 . . i], \mathbf{v}_{2}[1 . . j], \mathbf{v}_{3}[1 . . k]$
- $d_{p, q}(i, j)$ is cost of induced alignment of $\mathbf{v}_{p}[1 . . i], \mathbf{v}_{q}[1 . . j]$
- $D_{p, q}(i, j)$ is min cost of aligning $\mathbf{v}_{p}[1 . . i], \mathbf{v}_{q}[1 . . j]$

Alignment Projection and SP-score

Sequences $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ each of length n

- $D(i, j, k)$ is min SP-cost of aligning $\mathbf{v}_{1}[1 . . i], \mathbf{v}_{2}[1 . . j], \mathbf{v}_{3}[1 . . k]$
- $d_{p, q}(i, j)$ is cost of induced alignment of $\mathbf{v}_{p}[1 . . i], \mathbf{v}_{q}[1 . . j]$
- $D_{p, q}(i, j)$ is min cost of aligning $\mathbf{v}_{p}[1 . . i], \mathbf{v}_{q}[1 . . j]$

$$
d_{p, q}(i, j) \geq D_{p, q}(i, j)
$$

Alignment Projection and SP-score

Sequences $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ each of length n

- $D(i, j, k)$ is min SP-cost of aligning $\mathbf{v}_{1}[1 . . i], \mathbf{v}_{2}[1 . . j], \mathbf{v}_{3}[1 . . k]$
- $d_{p, q}(i, j)$ is cost of induced alignment of $\mathbf{v}_{p}[1 . . i], \mathbf{v}_{q}[1 . . j]$
- $D_{p, q}(i, j)$ is min cost of aligning $\mathbf{v}_{p}[1 . . i], \mathbf{v}_{q}[1 . . j]$

$$
d_{p, q}(i, j) \geq D_{p, q}(i, j)
$$

$$
\begin{aligned}
D(i, j, k) & =d_{1,2}(i, j)+d_{1,3}(i, k)+d_{2,3}(j, k) \\
& \geq D_{1,2}(i, j)+D_{1,3}(i, k)+D_{2,3}(j, k)
\end{aligned}
$$

Carillo-Lipman Method

- $D^{+}(i, j, k)$ is min SP-cost of alignment of suffix

$$
\mathbf{v}_{1}[i \ldots n], \mathbf{v}_{2}[j \ldots n], \mathbf{v}_{3}[k \ldots n]
$$

- $d_{p, q}^{+}(i, j)$ is cost of induced alignment of $\operatorname{suffix} \mathbf{v}_{p}[i . . n], \mathbf{v}_{q}[j \ldots n]$
- $D_{p, q}^{+}(i, j)$ is min cost of alignment of $\operatorname{suffix} \mathbf{v}_{p}[i . . n], \mathbf{v}_{q}[j . . n]$

Carillo-Lipman Method

$$
D^{+}(i, j, k)=d_{1,2}^{+}(i, j)+d_{1,3}^{+}(i, k)+d_{2,3}^{+}(j, k) \geq D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)
$$

$$
D(i, j, k)+D^{+}(i, j, k) \geq D(i, j, k)+D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)
$$

Carillo-Lipman Method

$$
D^{+}(i, j, k)=d_{1,2}^{+}(i, j)+d_{1,3}^{+}(i, k)+d_{2,3}^{+}(j, k) \geq D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)
$$

$$
D(i, j, k)+D^{+}(i, j, k) \geq D(i, j, k)+D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)
$$

Question: What if we have an alignment with cost Z ?

Carillo-Lipman Method

$$
D^{+}(i, j, k)=d_{1,2}^{+}(i, j)+d_{1,3}^{+}(i, k)+d_{2,3}^{+}(j, k) \geq D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)
$$

$$
D(i, j, k)+D^{+}(i, j, k) \geq D(i, j, k)+D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)
$$

Question: What if we have an alignment with cost z ?

If $z<D(i, j, k)+D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)$ then (i, j, k) not on optimal path $=>$ Prune!

Carillo-Lipman Method

$$
D^{+}(i, j, k)=d_{1,2}^{+}(i, j)+d_{1,3}^{+}(i, k)+d_{2,3}^{+}(j, k) \geq D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)
$$

$$
D(i, j, k)+D^{+}(i, j, k) \geq D(i, j, k)+D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)
$$

Question: What if we have an alignment with cost z ?

Question: How to find this alignment?

If $z<D(i, j, k)+D_{1,2}^{+}(i, j)+D_{1,3}^{+}(i, k)+D_{2,3}^{+}(j, k)$ then (i, j, k) not on optimal path $=>$ Prune!

Outline

- Multiple sequence alignment
- Exact algorithm
- Sum-of-pairs (SP) score
- Carillo-Lipman
- Heuristic approaches

Reading:

- Material based on Chapter 14.6 in book "Algorithms on Strings, Trees and Sequences" by Dan Gusfield

Inverse Problem: From Pairwise to Multiple Alignment

Question: Can we construct a multiple alignment that induces the above three pairwise alignments?

Inverse Problem: From Pairwise to Multiple Alignment

\mathbf{v}_{2}	A	C	-	G	C	-

Question: Can we construct a multiple alignment that induces the above three Not always! pairwise alignments?

Compatibility

Compatible: Pairwise alignments can be combined into multiple alignment

(a) Compatible pairwise aligrments

Incompatible: Pairwise alignments cannot be combined into multiple alignment

Compatibility

Compatible: Pairwise alignments

 can be combined into multiple alignment

- Indicate incompatible pairwise alignment

Incompatible: Pairwise alignments cannot be combined into multiple alignment

(a) Compatible pairwise alignments

From Compatible Pairwise to Multiple Alignment

Optimal multiple alignment

Pairwise alignments between all pairs of sequences, but they are not necessarily optimal
(Sub)optimal multiple alignment

Challenging

Good (or optimal) compatible pairwise alignments between all sequences

From Compatible Pairwise to Multiple Alignment

(Sub)optimal multiple alignment

Iterative/progressive multiple sequence alignment: Merge pairwise alignments

Challenging

Good (or optimal) compatible pairwise alignments between all sequences

Heuristic: Iterative/Progressive Alignment

Iteratively add strings (or alignments) to existing alignment(s).

Issues:

1. How to merge alignments?
2. What order to use in merging strings/alignments?

Heuristic Approach: Merge Pairwise Alignments

x GGGCACTGCAT
y GGTTACGTC--
z GGGAACTGCAG
w GGACGTACC--
v GGACCT-----

Alignment 1

Alignment 2

Question:

Can we align two alignments?

Need a way to summarize an alignment and score merged alignments

Profile Representation of Multiple Alignment

-	A	G	G	C	T	A	T	C	A	C	C	T	G
T	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	T	C	A	C	-	G	G
C	A	G	-	C	T	A	T	C	G	C	-	G	G

A	1				1	. 8				
C	. 6				. 4	1	. 6	. 2		
G		1	. 2						. 4	1
T	. 2			1	. 6				. 2	
-	. 2		. 8				. 4	. 8	. 4	

$$
\text { A profile } P=\left[p_{i, j}\right] \text { is a }(|\Sigma|+1) \times l \text { matrix, }
$$

where $p_{i, j}$ is the frequency of i-th letter in j-th position of alignment

Profile Representation of Multiple Alignment

We know how to align sequence against sequence

-	A	G	G	C	T	A	T	C	A	C	C	T	G
T	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	C	C	A	-	-	-	G
C	A	G	-	C	T	A	T	C	A	C	-	G	G
C	A	G	-	C	T	A	T	C	G	C	-	G	G

A	1				1	. 8		. 2		
C	. 6				. 4	1	. 6			
G		1	. 2						. 4	
T	. 2			1	. 6				. 2	
-	. 2		. 8				. 4		. 4	

Question: Can we align sequence against profile?

Question: Can we align profile against profile?

Aligning String to Profile

$$
\text { A profile } P=\left[p_{i, j}\right] \text { is a }(|\Sigma|+1) \times n \text { matrix, }
$$

where $p_{i, j}$ is the frequency of i-th letter in j-th position of alignment

Given: Sequences $\mathbf{v}=v_{1}, \ldots, v_{m}$ and profile P with n columns

- $s[i, j]$ is optimal alignment of v_{1}, \ldots, v_{m} and first j columns of P
- $\delta(x, y)$ is score for aligning characters x and y
- $\tau(x, j)$ is score for aligning character x and column j of P

Aligning String to Profile

$$
\begin{aligned}
\tau(x, j) & =\sum_{y \in \Sigma \cup\{-\}} p_{y, j} \cdot \delta(x, y) \\
s[i, j] & =\max \begin{cases}0, & \text { if } i=0 \text { and } j=0 \\
s[i-1, j]+\delta\left(v_{i},-\right), & \text { if } i>0, \quad \text { Insert space in profile } \\
s[i, j-1]+\tau(-, j), & \text { if } j>0, \quad \text { Insert space in string } \\
s[i-1, j-1]+\tau\left(v_{i}, j\right), & \text { if } i>0 \text { and } j>0\end{cases}
\end{aligned}
$$

- $s[i, j]$ is optimal alignment of v_{1}, \ldots, v_{m} and first j columns of P
- $\delta(x, y)$ is score for aligning characters x and y
- $\tau(x, j)$ is score for aligning character x and column j of P

Progressive Multiple Alignment: Greedy Algorithm

Choose most similar pair among \boldsymbol{k} input strings, combine into a profile. This reduces the original problem to alignment of $\boldsymbol{k} \mathbf{- 1}$ sequences to a profile. Repeat.

Example

Score of +1 for matches, -1 otherwise.

$$
\begin{array}{llll}
\text { s2 } & \text { GTCTGA } & \text { s1 } & \text { GATTCA-- } \\
\text { s4 } & \text { GTCAGC }(\text { score }=2) & \text { s4 } & \text { G-T-CAGC }(\text { score }=0) \\
& & \text { s2 } & \text { G-TCTGA } \\
\text { s1 GAT-TCA } \\
\text { s2 G-TCTGA }(\text { score }=1) & \text { s3 GATAT-T }(\text { score }=-1) \\
& & \text { s3 GAT-ATT } \\
\text { s1 GAT-TCA } \\
\text { s3 GATAT-T }(\text { score }=1) & \text { s4 } & \text { G-TCAGC }(\text { score }=-1)
\end{array}
$$

Example

Score of +1 for matches, -1 otherwise.

$$
\begin{array}{llll}
\text { s2 } & \text { GTCTGA } & \text { s1 } & \text { GATTCA-- } \\
\text { s4 } & \text { GTCAGC (score }=2) & \text { s4 } & \text { G-T-CAGC } \\
& & & \text { score }=0) \\
\text { s1 } & \text { GAT-TCA } & \text { s2 } & \text { G-TCTGA } \\
\text { s2 } & \text { G-TCTGA (score }=1) & \text { s3 } & \text { GATAT-T (score }=-1) \\
& & \text { s3 } & \text { GAT-ATT } \\
\text { s1 } & \text { GAT-TCA } & \\
\text { s3 } & \text { GATAT-T (score }=1) & \text { s4 } & \text { G-TCAGC (score }=-1)
\end{array}
$$

Question: Any theoretical guarantees on optimality?

Summary

- Multiple sequence alignment
- Exact algorithm
- Sum-of-pairs (SP) score
- Carillo-Lipman

Homework 2 due Oct. 5 by 11:59pm

Midterm on Oct. 10, 7-9pm, 1310 DCL

- Heuristic approaches

Reading:

- Material based on Chapter 14.6 in book "Algorithms on Strings, Trees and Sequences" by Dan Gusfield

