
CS 466 – Introduction to Bioinformatics – Lecture 7

Mohammed El-Kebir

September 26, 2018

Document history:

• 9/24/2018: Initial version.

• 9/26/2018: Simplified ILP.

• 9/26/2018: Typos in Section 1.2.1.

Contents

1 Protein Structure Alignment 1
1.1 Background . 1
1.2 Problem Statement . 2

1.2.1 Graph-based formulations . 2
1.3 Complexity . 3
1.4 Integer Linear Programming Formulation . 3

1 Protein Structure Alignment

1.1 Background

A protein achieves its biological function through its 3-D structure. The problem of pre-
dicting protein structure from an amino acid sequence is a more challenging problem than
the prediction of RNA secondary structure that we saw in the last lecture. While RNA
secondary structure is determined by a set of complementary base pairs, protein structure
is more involved due to a larger number of residues with different chemical properties and
interactions. Protein structures are typically determined using experimental techniques such
as X-ray crystallography and NMR spectroscopy.

In this lecture, we consider the problem of comparing two protein structures. The key
idea is that biological function is evolutionary conserved. Since function is achieved directly
through structure, we expect to uncover more evolutionary relationships through pairwise
protein structure comparison rather than pairwise protein sequence comparison.

These notes are based on material from [1, 2].

1

1.2 Problem Statement

Let Σ be the alphabet of amino acids (i.e. |Σ| = 20). Let A ∈ Σm and B ∈ Σn be two
protein sequences. In addition, we are given the 3-D spatial coordinates of each amino acid,
or residue, of A and B. We denote the distance between two residues i, j of A by dA(i, j).
Given a distance threshold τ , we binarize the distances, yielding an m × m binary matrix
CA = [cAi,j] where cAi,j = 1 if and only if dA(i, j) ≤ τ . We call matrix CA a contact map,
whose 1-entries indicate pairs of residues that are in close contact.

An alignment S of A and B can be viewed as a set of non-overlapping pairs (i, k) ∈
[m] × [n] of residues, with the additional constraint that there for all distinct aligned pairs
(i, k), (j, l) ∈ S it holds that

(i < j and k < l) or (j < i and l < k). (1)

A conserved contact in S is defined by two aligned pairs (i, k), (j, l) ∈ S such that cAi,j = 1
and cBk,l. We consider the following problem.

Problem 1 (Contact Map Overlap (CMO). Given two contact maps CA and CB of
protein sequences A ∈ Σm and B ∈ Σn, find an alignment of A and B with maximum number
of conserved contacts.

1.2.1 Graph-based formulations

There are two different ways to view CMO as a graph problem. Both representations model
protein structures (A,CA) and (B,CB) by two graphs GA = (VA, EA) and GB = (VB, EB).
There is a vertex vi ∈ VA (vk ∈ VB) for each residue i ∈ [m] (k ∈ [n]). There is an edge
(vi, vj) ∈ EA ((vk, vl) ∈ EB) for each pair i, j ∈ [n] (k, l ∈ [m]) of residues where cAi,j = 1
(cBk,l = 1).

1. Matching graph.

The matching graph GM = (VA ∪ VB, EM) is a complete bipartite graph, i.e. EM =
VA × VB. An alignment in GM is a non-crossing matching S, i.e. a subset of pairwise
disjoint edges that do not cross. That is, for all distinct edges (vi, vk), (vj, vl) ∈ S it
holds that

(i < j and k < l) or (j < i and l < k). (2)

What is the score of S?

2. Product graph.

The product graph G = (VA × VB, E) has a directed edge ((vi, vk), (vj, vl)) ∈ E if and
only if i < j, k < l, cAi,j = 1 and cBk,l = 1. Observe that by definition G is a directed
acyclic graph (DAG). We can draw G as a grid with vertex (v1, v1) in the bottom left
corner and vertex (vm, vn) in the top right corner. An alignment in G is a set S ⊆ V
of vertices such that for all two distinct vertices (vi, vk), (vj, vl) ∈ S it holds that

(i < j and k < l) or (j < i and l < k). (3)

What is the score of S?

2

1.3 Complexity

Recall the Clique problem, where given a simple graph G = (V,E) and an integer k ∈ N
we want to decide whether G has a clique of size k, i.e. a subset V ′ ⊆ V of vertices such
that |V ′| = k and for all distinct v, w ∈ V ′ it holds that (v, w) ∈ E. The Clique problem
is NP-complete. We reduce Clique to CMO, by simply setting G1 = G and G2 = Kk,
i.e. G2 is the complete graph of k vertices. Clearly, this reduction takes polynomial time.
Now, observe that G has a clique of size k if and only if the maximum number of conserved
contacts in G1 and G2 is k.

1.4 Integer Linear Programming Formulation

We start with the matching graph representation G = (V1∪V2, EM). For each (vi, vk) ∈ EM ,
we introduce a binary variable xi,k ∈ {0, 1} where xi,k = 1 if and only if residue i of A is
aligned with residue k of B. For each pair (vi, vk), (vj, vl) ∈ EM of edges, we introduce the
constant ci,k,j,l defined as

ci,k,j,l =

󰀫
1, if cAi,j = cBk,l = 1,

0, otherwise.
(4)

Let X be the set of all alignments. This leads to the following mathematical program.

max
x

m󰁛

i=1

n󰁛

k=1

m󰁛

j=i+1

n󰁛

l=k+1

ci,k,j,lxi,kxj,l (5)

s.t. x ∈ X (6)

We define X using linear constraints. To this end, we define a pairwise incompatible set
as a subset I ⊆ EM such that for all distinct pairs (i, k), (j, l) ∈ I it does not hold that
(i < j and k < l) or (j < i and l < k). Subset I is maximal if it cannot be extended
by an additional edge in EM yielding another pairwise incompatible set I ′. Equivalently, a
maximal pairwise incompatible set I is a decreasing path (i1, k1), (i2, k2), . . . (im, km) where
i1 ≥ i2 ≥ . . . im and k1 ≤ k2 ≤ . . . km in the product graph G (assuming m ≥ n). Let I be
the set of all maximal pairwise incompatible pairs. Exercise: How large is I?

We replace (6) by the following constraints.

󰁛

(i,k)∈I

xi,k ≤ 1 ∀I ∈ I (7)

xi,j ∈ {0, 1} ∀i ∈ [m], j ∈ [n] (8)

The program defined by constraints (5), (7) and (8) is a binary quadratic program. We
linearize this by introducing variables yi,k,j,l := xi,kxj,l and constraints

yi,k,j,l ≤ xi,k ∀i ∈ [m], k ∈ [n], j ∈ {i+ 1, . . . ,m}, l ∈ {k + 1, . . . , n} (9)

yi,k,j,l ≤ xj,l ∀i ∈ [m], k ∈ [n], j ∈ {i+ 1, . . . ,m}, l ∈ {k + 1, . . . , n} (10)

yi,k,j,l ≥ 0 ∀i ∈ [m], k ∈ [n], j ∈ {i+ 1, . . . ,m}, l ∈ {k + 1, . . . , n} (11)

3

We have the following integer linear program.

max
x

m󰁛

i=1

n󰁛

k=1

m󰁛

j=i+1

n󰁛

l=k+1

ci,k,j,lyi,k,j,l

s.t.
󰁛

(i,k)∈I

xi,k ≤ 1 ∀I ∈ I

yi,k,j,l ≤ xi,k ∀i ∈ [m], k ∈ [n], j ∈ {i+ 1, . . . ,m}, l ∈ {k + 1, . . . , n}
yi,k,j,l ≤ xj,l ∀i ∈ [m], k ∈ [n], j ∈ {i+ 1, . . . ,m}, l ∈ {k + 1, . . . , n}
yi,k,j,l ≥ 0 ∀i ∈ [m], k ∈ [n], j ∈ {i+ 1, . . . ,m}, l ∈ {k + 1, . . . , n}
xi,j ∈ {0, 1} ∀i ∈ [m], j ∈ [n]

Observe that there are an exponential number of constraints. Thus implementing this
ILP by fully specifying all constraints will not scale in practice. Can we do better than this?
Yes, we will separate these constraints as we solve the ILP. Initially, we omit constraints
(7). We then solve the linear programming (LP) relaxation, where constraints (8) have been
replaced by 0 ≤ xi,k ≤ 1. The resulting fractional solution x̄ may violate omitted constraints
(7). How can we identify violated constraints?

As previously described, each maximal pairwise incompatible set I is a decreasing path
in G from (m, 1) to (1, n). The task now is to find a longest path P in G between these
two vertices, where the length of P is simply the sum of the fractional variables x̄i,k of each
vertex vi,k in P . We can do this using dynamic programming in O(mn) time. If the longest
path has length greater than 1 then we identified a violated constraint, which we add to the
model. Otherwise, there are no violated constraints of the form (7).

If we identified violated constraints, we solve the updated model. This is repeated until
there are no violated constraints. In this case x̄ might still be fractional. That is why we will
use branching, where we pick a vertex vi,k and consider the two cases xi,k = 0 and xi,k = 1.
For each branching case, we will solve the LP relaxation by separating cutting planes (as
described above). This procedure is known as branch-and-cut (B&C), and enables one to
solve practical problem instances of complicated combinatorial optimization problems.

References

[1] Alberto Caprara, Robert Carr, Sorin Istrail, Giuseppe Lancia, and Brian Walenz. 1001
Optimal PDB Structure Alignments: Integer Programming Methods for Finding the
Maximum Contact Map Overlap. Journal of Computational Biology, 11(1):27–52, Jan-
uary 2004.

[2] Inken Wohlers. Exact algorithms for pairwise protein structure alignment. PhD thesis,
VU University Amsterdam, 2012.

4

