CS 466
 Introduction to Bioinformatics Lecture 6

Mohammed El-Kebir
September 19, 2018

Course Announcements

Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Mondays, 3:15-4:15pm

TA:

- Anusri Pampari (pampari2)
- Office hours: Thursdays, 11:00-11:59am in SC 4105

TA office hour canceled on Sept. 20
Solution to HW 1 released on Sept. 21
Midterm on Oct. 10, 7-9pm, 1310 DCL

Outline

- Two open questions on Hirschberg algorithm
- RNA secondary structure

Reading:

- Topics are not in Jones and Pevzner book but in lecture notes and slides [Based on Chapter 10 in "Biological sequence analysis" by Durbin et al.]

Hirschberg Algorithm: Reversing Edges Necessary?

Max weight path from $(0,0)$ to (m, n) through $\left(i^{*}, n / 2\right)$

$$
i^{*}=\underset{0 \leq i \leq m}{\arg \max }\{\operatorname{prefix}(i)+\operatorname{suffix}(i)\}
$$

Compute $\{\operatorname{prefix}(i) \mid 0 \leq i \leq m\}$ in $\mathrm{O}(m n)$ time and $\mathrm{O}(m)$ space, by starting from $(0,0)$ to $\left(m, \frac{n}{2}\right)$ keeping only two columns in memory. [single-source multiple destinations]

Hirschberg Algorithm: Reversing Edges Necessary?

Max weight path from $(0,0)$ to (m, n) through $\left(i^{*}, n / 2\right)$

$$
i^{*}=\underset{0 \leq i \leq m}{\arg \max }\{\operatorname{prefix}(i)+\operatorname{suffix}(i)\}
$$

Compute $\{\operatorname{prefix}(i) \mid 0 \leq i \leq m\}$ in $\mathrm{O}(m n)$ time and $\mathrm{O}(m)$ space, by starting from $(0,0)$ to $\left(m, \frac{n}{2}\right)$ keeping only two columns in memory. [single-source multiple destinations]

Want: Compute $\{\operatorname{suffix}(i) \mid 0 \leq i \leq m\}$ in $\mathrm{O}(m n)$ time and $\mathrm{O}(m)$ space

Doing a shortest path from each $\left(i, \frac{n}{2}\right)$ to (m, n) (for all $0 \leq i \leq m$) will not achieve desired running time!
Reversing edges enables single-source multiple destination computation in desired time and space bound!

Hirschberg Algorithm: Reconstructing Alignment

Hirschberg($\left.i, j, i^{\prime}, j^{\prime}\right)$

1. if $j^{\prime}-j>1$
2. $i^{*} \leftarrow \underset{0 \leq i \leq m}{\arg \max } \operatorname{wt}(i)$
3. $\operatorname{Report}\left(i^{*}, j+\frac{j^{\prime}-j}{2}\right)$
4. $\quad \operatorname{Hirschberg}\left(i, j, i^{*}, j+\frac{j^{\prime}-j}{2}\right)$
5. $\quad \operatorname{Hirschberg}\left(i^{*}, j+\frac{j^{\prime}-j}{2}, i^{\prime}, j^{\prime}\right)$

Problem: Given reported vertices and scores $\left\{\left(i_{0}, 0, s_{0}\right), \ldots,\left(i_{n}, n, s_{n}\right)\right\}$, find intermediary vertices.

A	T	-	G	T	C
A	T	C	G	-	C

Transposing matrix does not help, because gaps could occur in both input sequences

Outline

- Two open questions on Hirschberg algorithm
- RNA secondary structure

Reading:

- Topics are not in Jones and Pevzner book but in lecture notes and slides [Based on Chapter 10 in "Biological sequence analysis" by Durbin et al.]

Central Dogma of Molecular Biology

Three fundamental molecules:

1. DNA

Information storage.
2. RNA

Old view: Mostly a "messenger".
New view: Performs many important functions, through 3-D structure!

3. Protein

Perform most cellular functions (biochemistry, signaling, control, etc.)

- Single-stranded

- A (adenine)
- C (cytosine)
- U (uracil)
- G (guanine)
- Can fold into structures due to nucleotide complementarity. A <--> U, C <-->G
- Comes in many flavors:
mRNA, rRNA, tRNA, tmRNA, snRNA, snoRNA, scaRNA, aRNA, asRNA, piwiRNA, etc.

RNA - Nucleotide Complementarity

RNA can fold into structures due to nucleotide complementarity:
A <--> U and G <--> C

Guanine (G)
Cytosine (C)

transfer RNA (tRNA) Secondary Structure

http://bioinfo.bisr.res.in/project/crat/pictures/codon.jpg

RNA Secondary Structure Elements

Each base/nucleotide participates in at most one pairing

Secondary structure is determined by a set of non-overlapping base/nucleotide pairs

Nesting and Pseudoknot

Base pairs (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ are nested provided

$$
i<i^{\prime}<j^{\prime}<j \text { or } i^{\prime}<i<j<j^{\prime}
$$

Base pairs (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ form a pseudoknot provided $i<i^{\prime}<j<j^{\prime}$ or $i^{\prime}<i<j^{\prime}<j$

Most RNA molecules consist of nested base pairs

Nesting and Pseudoknot - Examples
Nesting
$5^{\prime}-\mathrm{GCGGAUUCUGCCCCAAUUCGCACCA-} 3^{\prime}$
(() (((- - - -))))))) - -

Nesting and Pseudoknot - Examples

Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity: A <--> U and G <--> C

Secondary structure is determined by a set of non-overlapping complimentary base pairs

Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity: A <--> U and G <-->C

Secondary structure is determined by a set of non-overlapping complimentary base pairs
Question: How to find maximum number of such pairs?

Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity:

$$
A<-->U \text { and G <--> C }
$$

Secondary structure is determined by a set of non-overlapping complimentary base pairs
Question: How to find maximum number of such pairs?

Need to constrain space of feasible solutions!

Nussinov Algorithm

RNA can fold into structures due to nucleotide complementarity:
A <--> U and G <--> C
Secondary structure is determined by a set of non-overlapping complimentary base pairs
Question: How to find maximum number of such pairs?

Need to constrain space of feasible solutions!

ALGORITHMS FOR LOOP MATCHINGS*

RUTH NUSSINOV, \dagger GEORGE PIECZENIK, \ddagger JERROLD R. GRIGGS AND DANIEL J. KLEITMAN§

Problem: Given RNA sequence $\mathbf{v} \in\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}^{n}$, find a pseudoknot-free secondary structure with the maximum number of complementary base pairings

Nussinov Algorithm - Dynamic Programming

Problem: Given RNA sequence $\mathbf{v} \in\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}^{n}$, find a pseudoknot-free secondary structure with the maximum number of complementary base pairings

Let $s[i, j]$ denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_{i}, \ldots, v_{j}

Nussinov Algorithm - Dynamic Programming

Problem: Given RNA sequence $\mathbf{v} \in\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}^{n}$, find a pseudoknot-free secondary structure with the maximum number of complementary base pairings

Let $s[i, j]$ denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_{i}, \ldots, v_{j}

(3)

j unpaired

Nussinov Algorithm - Dynamic Programming

Problem: Given RNA sequence $\mathbf{v} \in\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}^{n}$, find a pseudoknot-free secondary structure with the maximum number of complementary base pairings

Let $s[i, j]$ denote the maximum number of pseudoknot-free complementary base pairings in subsequence v_{i}, \ldots, v_{j}

$$
s[i, j]=\max \left\{\begin{array}{l}
0, \tag{4}\\
s[i+1, j-1]+1, \\
s[i+1, j-1], \\
s[i+1, j], \\
s[i, j-1], \\
\max _{i<k<j}\{s[i, k]+s[k+1, j]\},
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if } i \geq j, \\
& \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma, \text { (1) } \\
& \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma, \text { (1*) } \\
& \text { if } i<j, \\
& \text { if } i<j, \\
& \text { if } i<j,
\end{aligned}
$$

(4)

bifurcation

Develop Intuition [Spreadsheet/Whiteboard]

Nussinov Algorithm - Traceback Step

Nussinov Algorithm - Example

	\mathbf{G}	\mathbf{G}	\mathbf{G}	\mathbf{A}	\mathbf{A}	\mathbf{A}	\mathbf{U}	\mathbf{C}	\mathbf{C}
\mathbf{G}	0								
\mathbf{G}	0	0							
\mathbf{G}	0	0	0						
\mathbf{A}	0	0	0	0					
\mathbf{A}	0	0	0	0	0				
\mathbf{A}	0	0	0	0	0	0			
\mathbf{U}	0	0	0	0	0	0	0		
\mathbf{C}	0	0	0	0	0	0	0	0	
\mathbf{C}	0	0	0	0	0	0	0	0	0

$$
s[i, j]=\max \begin{cases}0, & \text { if } i \geq j, \\ s[i+1, j-1]+1, & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma,(1) \\ s[i+1, j-1], & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma,\left(1^{*}\right) \\ s[i+1, j], & \text { if } i<j, \\ s[i, j-1], & \text { if } i<j, \\ \max _{i<k<j}\{s[i, k]+s[k+1, j]\}, & \text { if } i<j,\end{cases}
$$

Nussinov Algorithm - Example

	G	G	G	A	A	A	U	C	C
G	0	0							

$$
s[i, j]=\max \begin{cases}0, & \text { if } i \geq j, \\ s[i+1, j-1]+1, & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma, \text { (1) } \\ s[i+1, j-1], & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma,\left(1^{*}\right) \\ s[i+1, j], & \text { if } i<j, \\ s[i, j-1], & \text { if } i<j, \\ \max _{i<k<j}\{s[i, k]+s[k+1, j]\}, & \text { if } i<j,\end{cases}
$$

Nussinov Algorithm - Example

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

Nussinov Algorithm - Example

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

$$
\begin{align*}
& s[i, j]=\max \left\{\begin{array}{ll}
0, & \text { if } i \geq j, \\
s[i+1, j-1]+1, & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma, \text { (1) } \\
s[i+1, j-1], & \text { if } i<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma,\left(1^{*}\right) \\
s[i+1, j], & \text { if } i<j, \\
s[i, j-1], & \text { if } i<j, \\
\max _{i<k<j}\{s[i, k]+s[k+1, j]\}, & \text { if } i<j,
\end{array}\right. \text { (2) }
\end{align*}
$$

Nussinov Algorithm - Alternative Solutions

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

G	G	G	A 1	A	A	U	C	C

G	G	G	A	A	A	U	C	C
((()))

Nussinov Algorithm - Example With Bifurcation

GCACGACG
().((.))

Does this make sense?

	G	G	G	A	A	A	U	C	C
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	3
G	0	0	0	0	0	0	1	2	2
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
A	0	0	0	0	0	0	1	1	1
U	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0
C	0	0	0	0	0	0	0	0	0

Guanine (G)
Cytosine (C)

GCACGAC G

0 (1)	(1) ${ }^{2}$	1	22	2			
(0) 0	0	0	11	1	2		C 2
0	0	0	11	1	2		A 3
	0	0	11	1			C 4
		0			1		G 5
			0 O		1		A 6
			0	0	1		
				0	0		

GCACGACG
$(\mathrm{l}) \cdot(()$.

Extension: Hairpin Loops with Minimum Length ℓ

A

G

C
u

Guanine (G)

Extension: Hairpin Loops with Minimum Length ℓ

$$
s[i, j]=\max \begin{cases}0, & \text { if } i+\ell \geq j, \tag{1}\\ s[i+1, j-1]+1, & \text { if } i+\ell<j \text { and }\left(v_{i}, v_{j}\right) \in \Gamma, \\ s[i+1, j-1], & \text { if } i+\ell<j \text { and }\left(v_{i}, v_{j}\right) \notin \Gamma, \\ s[i+1, j], & \text { if } i+\ell<j, \\ s[i, j-1], & \text { if } i+\ell<j, \\ \max _{i+\ell<k<j}\{s[i, k]+s[k+1, j]\}, & \text { if } i+\ell<j,\end{cases}
$$(1*)

RNA Secondary Structure Prediction in Practice

Rather than maximize number of compl. base pairs, minimize free energy (FE)
Zuker's algorithm: Dynamic programming w/ three matrices similar to affine gap penalties

- $\mathrm{V}(\mathrm{i}, \mathrm{j})$: FE of optimal structure of $s[i . . j]$ assuming i,j form a base pair
- VBI(i, j): FE of optimal structure of $s[i . . j]$ assuming i,j closes a bulge or internal loop

- VM(i,j): FE of optimal structure of s[i.i.j] assuming i,j closes a multibranch loop

FE minimization with pseudoknots is NP-hard [Lyngso and Pedersen, RECOMB 2000]

Summary

- RNA is a sequence of four bases/nucleotides $\{\mathrm{A}, \mathrm{U}, \mathrm{C}, \mathrm{G}\}$
- RNA folds into structures due to base/nucleotide complementarity
- A <--> U and C <--> G
- RNA secondary structure is defined by a set of non-overlapping complementary nucleotide pairs
- Pseudoknot-free structures have no "crossing" pairs
- Nussinov Algorithm: Dynamic programming to find pseudoknot-free structure with maximum number of complementary nucleotide pairs

Reading:

- Topics are not in Jones and Pevzner book but in lecture notes and slides [Based on Chapter 10 in "Biological sequence analysis" by Durbin et al.]

