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1 Space Efficient Alignment

We consider the global alignment problem, where we are given two strings v ∈ Σm and
w ∈ Σn and a scoring function δ : (Σ ∪ {−}) × (Σ ∪ {−}) → R. The task is to find an
alignment of v and w with maximum global alignment score among all alignments of v
and w. Let s[i, j] (where i ∈ {0, . . . ,m} and j ∈ {0, . . . , n}) denote the maximum global
alignment score of the prefix v1, . . . , vi of v and prefix w1, . . . , wj of w. We define s[0, 0] = 0.
This leads to the following recurrence:

s[i, j] = max






0, if i = 0 and j = 0,

s[i− 1, j] + δ(vi,−), if i > 0,

s[i, j − 1] + δ(−, wj), if j > 0,

s[i− 1, j − 1] + δ(vi, wj), if i > 0 and j > 0.

(1)
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Recall that a global alignment is a path from (0, 0) to (m,n) in the edit graph, which
is obtained directly from the above recurrence (e.g., vertices are entries (i, j) and edges
correspond to each of the three cases). The maximum score global alignment is the maximum
weight path from (0, 0) to (m,n). Assume that n is even. Now, suppose that the maximum
weight path from (0, 0) to (m,n) passes through (i∗, n/2). How can we determine i∗?

We define wt(i) to be the weight of the maximum weight path from (0, 0) to (m,n)
passing through (i, n/2). Hence,

i∗ = argmax
0≤i≤m

(wt(i)). (2)

How do we compute wt(i)? To that end, we define two functions prefix(i) and suffix(i)
that denote the weight of the maximum weight path from (0, 0) to (i, n/2) and from (i, n/2) to
(m,n), respectively. We have that wt(i) = prefix(i) + suffix(i). Now {prefix(0), . . . , prefix(m)}
can be computed in O(m) space by computing the longest path from (0, 0) to (m,n/2), by
only keeping two columns in memory starting from column 0. The computed value in
(i, n/2) in the last column will correspond to prefix(i) for each i ∈ {0, . . . ,m}. Similarly,
{suffix(0), . . . , suffix(m)} can be computed in O(m) space by computing the longest path
from (m,n) to (0, n/2), by reversing the edges in the edit graph and only keeping two
columns in memory starting from column m.

Observe that the running time is the sum of the area of the left rectangle defined by
[(0, 0), (m,n/2)] and the area of the right rectangle defined by [(0, n/2), (m,n)]. Thus, it
requiresO(1/2mn) = O(mn) time andO(m) space. This will give us (i∗, n/2). How do we get
the other vertices of the alignment? We use optimal substructure and simply recurse on the
rectangle [(0, 0), (i∗, n/2)] to identify vertex (i∗∗, n/4) through which the optimal alignment
from (0, 0) to (i∗, n/2) has to pass. We also recurse on the rectangle [(i∗, n/2), (m,n)] to
identify vertex (i∗∗∗, 3n/4) through which the optimal alignment from (i∗, n/2) to (m,n) has
to pass. The recursion terminates when the rectangle only has two columns.

It is clear that only the initial call of this procedure requires O(m) space, subsequent calls
require less space. As described previously, the running time of a recursive call is given by
the input area. Now in each subsequent recursive call the area is halved. Thus, the running
time is given by area + area/2 + area/4 + . . .. This is a geometric series, and is bounded by
2 · area. Thus, the running time is 2(m+ 1)(n+ 1) = O(mn).

2 Subquadratic Time Alignment

We consider the block alignment problem, where we are given where we are given two strings
v ∈ Σm and w ∈ Σn and block length t. The task is to find a block alignment of v and w.
In such an alignment every block in one sequence is either aligned against an entire block in
the other sequence or inserted/deleted as a whole. In other words, the alignment path must
enter and leave a block through its corner vertices.

We will use the Four Russians technique. Assuming that v and w are sequences from
a four-letter alphabet (such as DNA), we set t = log2(n)/4. The algorithm is very simple.
We will precompute all alignments of all pairs of strings, each of length t = log2(n)/4. How
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many four-letter strings are there of such length?

4t = 4log2(n)/4 (3)

= (22)log2(n)/4 (4)

= 2log2(n)/2 (5)

= (2log2(n))1/2 (6)

= n1/2 =
√
n. (7)

Each alignment that we want to precompute is between a pair of four-letter strings of length
t. Thus, the number of alignments that we need to precompute is n1/2 · n1/2 = n. Now each
alignment of takes O(t2) = O((log2 n)

2) time. Thus, the total time needed for all computing
all alignments is

O(nt2) = O(n(log2 n)
2) = O(n log2 n). (8)

The precomputed alignments are stored in a look-up table S, indexed by two four-letter
strings of length t. We assume that each lookup takes O(log n) time.

Now let’s focus on computing the block alignment between the input strings v and w.
For simplicity, we assume that |v| = |w| = n. As discussed in class, computing the optimal
block alignment requires n

t
× n

t
lookups in S, each lookup requiring O(log n) time. Thus, we

require

O(
n

log2(n)/4
· n

log2(n)/4
· log n) = O(

n2

log n
) (9)

time to compute the optimal block alignment given the lookup table S. This running time
dominates the time needed to precompute S (which took O(n log2 n) time). Hence, we have
a total running time of O(n2/ log n).

3 Is n2/ log n in O(n2−) for some  > 0?

Let’s assume that this is the case and let b > 0 be the base of the logarithm. That means
that there exist constants n0, c > 0 and  ∈ (0, 2) such that

n2

logb n
≤ cn2− ∀n > n0. (10)

To verify whether such constants exist, we consider the limit of the ratio between the
functions n2/ logb n and n2−. Per our assumption, we expect the limit to be a constant
(more specifically, a function of ). We have,

lim
n→∞

n2/ logb n

n2−
= lim

n→∞

n2n

n2 logb n
= lim

n→∞

n

logb n
. (11)

To compute this limit, we use l’Hôpital’s rule. Let f(n) = n and g(n) = logb n. We have
f ′(n) = n−1 and g′(n) = 1/(n ln b). As limn→∞ f(n) = n = ∞, limn→∞ g(n) = logb n = ∞
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and g′(n) ∕= 0 for all n > 0 (recall that b > 0), we meet the preconditions of the rule. Thus,
we have

lim
n→∞

n−1

1/(n ln b)
= lim

n→∞
n−1n ln b =  ln b lim

n→∞
n = ∞. (12)

This yields a contradiction. Hence, there is no constant  > 0 such that n2/ log n ∈ O(n2−).
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