CS 466
 Introduction to Bioinformatics Lecture 5

Mohammed El-Kebir
September 17, 2018

Course Announcements

Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Mondays, 3:15-4:15pm

TA:

- Anusri Pampari (pampari2)
- Office hours: Thursdays, 11:00-11:59am in SC 4105

TA office hour canceled on Sept. 20
Homework 1: Due on Sept. 17 (11:59pm)

Gapped Alignment - Additional Insights

- Naive approach supports arbitrary gap penalties given two sequences $\mathbf{v} \in \Sigma^{m}$ and $\mathbf{w} \in \Sigma^{n}$. This results in an $O(m n(m+n))$ algorithm.
- Alignment with convex gap penalties given two sequences $\mathbf{v} \in \Sigma^{m}$ and $\mathbf{w} \in \Sigma^{n}$ can be computed in $O(m n \log m)$ time. See: Dan Gusfield. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York, NY, USA.

Global, Fitting and Local Alignment

Global Alignment problem: Given strings $\mathbf{v} \in \Sigma^{m}$ and $\mathbf{w} \in \Sigma^{n}$ and scoring function δ, find alignment of \mathbf{v} and \mathbf{w} with maximum score. [Needleman-Wunsch algorithm]

Fitting Alignment problem: Given strings $\mathbf{v} \in \Sigma^{m}$ and $\mathbf{w} \in \Sigma^{n}$ and scoring function δ, find an alignment of \mathbf{v} and a substring of \mathbf{w} with maximum global alignment score s^{*} among all global alignments of \mathbf{v} and all substrings of \mathbf{w}

Local Alignment problem: Given strings $\mathbf{v} \in \Sigma^{m}$ and $\mathbf{w} \in \Sigma^{n}$ and scoring function δ, find a substring of \mathbf{v} and a substring of \mathbf{w} whose alignment has maximum global alignment score s^{*} among all global alignments of all substrings of \mathbf{v} and \mathbf{w} [Smith-Waterman algorithm]

Question: How to assess resulting algorithms?

Time Complexity

Edit graph is a weighed, directed grid graph $G=(V, E)$ with source vertex $(0,0)$ and target vertex (m, n). Each edge ($(i, j),(k, l))$ has weight depending on direction.

Alignment is a path from source $(0,0)$ to target (m, n) in edit graph

Running time is $O(\mathrm{mn})$ [quadratic time]

Time Complexity

Edit graph is a weighed, directed grid graph $G=(V, E)$ with source vertex $(0,0)$ and target vertex (m, n). Each edge ($(i, j),(k, l))$ has weight depending on direction.

Alignment is a path from source $(0,0)$ to target (m, n) in edit graph

Running time is $O(m n)$ [quadratic time]

Question: Compute alignment faster than $O(\mathrm{mn})$ time? [subquadratic time]

Space Complexity

Size of DP table is $(m+1) \times(n+1)$

Thus, space complexity is O (mn) [quadratic space]

Example:

To align a short read $(m=100)$ to human genome ($n=3 \cdot 10^{9}$), we need 300 GB memory.

Space Complexity

Size of DP table is $(m+1) \times(n+1)$

	A	T	C	G		
	\mathbf{V}	0	1	2	3	$n=4$
	0					
A	1					
	2					
G	3					
	$m=4$					

Thus, space complexity is $O(\mathrm{mn})$ [quadratic space]

Example:

To align a short read ($m=100$) to human genome ($n=3 \cdot 10^{9}$), we need 300 GB memory.

Question: How long is an alignment?

Space Complexity

Size of DP table is $(m+1) \times(n+1)$

	A		T	C	G	
	\mathbf{V}	0	1	2	3	$n=4$
	0					
	1					
	2					
G	3					
	$m=4$					

Thus, space complexity is $O(\mathrm{mn})$ [quadratic space]

Example:

To align a short read ($m=100$) to human genome ($n=3 \cdot 10^{9}$), we need 300 GB memory.

Question: How long is an alignment?

Question: Compute alignment in $O(m)$ space? [linear space]

Outline

1. Recap of global, fitting, local and gapped alignment
2. Space-efficient alignment
3. Subquadratic time alignment

Reading:

- Jones and Pevzner. Chapters 7.1-7.4
- Lecture notes

Space Efficient Alignment

Computing $s[i, j]$ requires access to: $s[i-1, j], s[i, j-1]$ and $s[i-1, j-1]$

$$
s[i, j]=\max \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ s[i-1, j]+\delta\left(v_{i},-\right), & \text { if } i>0, \\ s[i, j-1]+\delta\left(-, w_{j}\right), & \text { if } j>0, \\ s[i-1, j-1]+\delta\left(v_{i}, w_{j}\right), & \text { if } i>0 \text { and } j>0 .\end{cases}
$$

Figure 7.2 Calculating an alignment score requires no more than $2 n$ space for an $n \times n$ alignment problem. Computing the alignment scores in each column requires only the scores in the preceding column. We show here the dynamic programming array-the data structure that holds the score at each vertex-instead of the graph.

Space Efficient Alignment

Computing $s[i, j]$ requires access to: $s[i-1, j], s[i, j-1]$ and $s[i-1, j-1]$

$$
s[i, j]=\max \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ s[i-1, j]+\delta\left(v_{i},-\right), & \text { if } i>0, \\ s[i, j-1]+\delta\left(-, w_{j}\right), & \text { if } j>0, \\ s[i-1, j-1]+\delta\left(v_{i}, w_{j}\right), & \text { if } i>0 \text { and } j>0 .\end{cases}
$$

Thus it suffices to store only two columns to compute optimal alignment score $s[m, n]$, i.e., $2(m+1)=O(m)$ space.

Figure 7.2 Calculating an alignment score requires no more than $2 n$ space for an $n \times n$ alignment problem. Computing the alignment scores in each column requires only the scores in the preceding column. We show here the dynamic programming array-the data structure that holds the score at each vertex-instead of the graph.

Space Efficient Alignment

Computing $s[i, j]$ requires access to: $s[i-1, j], s[i, j-1]$ and $s[i-1, j-1]$
$s[i, j]=\max \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ s[i-1, j]+\delta\left(v_{i},-\right), & \text { if } i>0, \\ s[i, j-1]+\delta\left(-, w_{j}\right), & \text { if } j>0, \\ s[i-1, j-1]+\delta\left(v_{i}, w_{j}\right), & \text { if } i>0 \text { and } j>0 .\end{cases}$
Thus it suffices to store only two columns to compute optimal alignment score $s[m, n]$, i.e., $2(m+1)=O(m)$ space.

Question: What if we want alignment itself?

Figure 7.2 Calculating an alignment score requires no more than $2 n$ space for an $n \times n$ alignment problem. Computing the alignment scores in each column requires only the scores in the preceding column. We show here the dynamic programming array-the data structure that holds the score at each vertex-instead of the graph.

Space Efficient Alignment - First Attempt

- What if also want optimal alignment?
- Easy: keep best pointers as fill in table.
- No! Do not know which path to keep until computing recurrence at each step.

Space Efficient Alignment - First Attempt

- What if also want optimal alignment?
- Easy: keep best pointers as fill in table.
- No! Do not know which path to keep until computing recurrence at each step.

Space Efficient Alignment - First Attempt

- What if also want optimal alignment?
- Easy: keep best pointers as fill in table.
- No! Do not know which path to keep until computing recurrence at each step.

Space Efficient Alignment - Second Attempt
Alignment is a path from source $(0,0)$ to target (m, n) in edit graph

Maximum weight path from $(0,0)$ to (m, n) passes through $\left(i^{*}, n / 2\right)$

Linear-Space Sequence Alignment

Hirschberg $\left(i, j, i^{\prime}, j^{\prime}\right)$

1. if $j^{\prime}-j>1$
2. $i^{*} \leftarrow \arg \max \mathrm{wt}\left(i^{\prime \prime}\right)$ $i \leq i^{\prime \prime} \leq i^{\prime}$
3. $\operatorname{Report}\left(i^{*}, j+\frac{j^{\prime}-j}{2}\right)$
4. Hirschberg $\left(i, j, i^{*}, j+\frac{j^{\prime}-j}{2}\right)$
5. Hirschberg $\left(i^{*}, j+\frac{j^{\prime}-j}{2}, i^{\prime}, j^{\prime}\right)$

Linear-Space Sequence Alignment

Hirschberg $\left(i, j, i^{\prime}, j^{\prime}\right)$

1. if $j^{\prime}-j>1$
2. $i^{*} \leftarrow \arg \max \mathrm{wt}\left(i^{\prime \prime}\right)$

$$
i \leq i^{\prime \prime} \leq i^{\prime}
$$

3. $\operatorname{Report}\left(i^{*}, j+\frac{j^{\prime}-j}{2}\right)$
4. Hirschberg $\left(i, j, i^{*}, j+\frac{j^{\prime}-j}{2}\right)$
5. Hirschberg $\left(i^{*}, j+\frac{j^{\prime}-j}{2}, i^{\prime}, j^{\prime}\right)$

Time:

$$
\begin{aligned}
& \quad \text { area }+ \text { area } / 2+\text { area } / 4+\ldots \\
& =\text { area }(1+1 / 2+1 / 4+1 / 8+\ldots) \\
& \leq 2 \times \text { area }=O(\mathrm{mn}) \\
& \text { Space: } \mathrm{O}(\mathrm{~m})
\end{aligned}
$$

Linear-Space Sequence Alignment

Hirschberg($\left.i, j, i^{\prime}, j^{\prime}\right)$

1. if $j^{\prime}-j>1$
2. $\quad i^{*} \leftarrow \arg \max \mathrm{wt}\left(i^{\prime \prime}\right)$

$$
i \leq i^{\prime \prime} \leq i^{\prime}
$$

3. $\operatorname{Report}\left(i^{*}, j+\frac{j^{\prime}-j}{2}\right)$
4. Hirschberg $\left(i, j, i^{*}, j+\frac{j^{\prime}-j}{2}\right)$
5. Hirschberg $\left(i^{*}, j+\frac{j^{\prime}-j}{2}, i^{\prime}, j^{\prime}\right)$

Time:

$$
\begin{aligned}
& \quad \text { area }+ \text { area } / 2+\text { area } / 4+\ldots \\
& =\text { area }(1+1 / 2+1 / 4+1 / 8+\ldots) \\
& \leq 2 \times \text { area }=O(\mathrm{mn}) \\
& \text { Space: } \mathrm{O}(\mathrm{~m})
\end{aligned}
$$

Question: How to reconstruct alignment from reported vertices?

Linear Space Alignment - The Hirschberg Algorithm

Programming
Techniques
G. Manacher

Editor
A Linear Space Algorithm for Computing Maximal CommonSubsequences
D.S. Hirschberg

Princeton University

Dan Hirschberg
Professor of Computer Science \& EECS UC Irvine Senate Parliamentarian

Outline

1. Recap of global, fitting, local and gapped alignment
 2. Space-efficient alignment

3. Subquadratic time alignment

Reading:

- Jones and Pevzner. Chapters 7.1-7.4
- Lecture notes

Banded Alignment

Constraint path to band of width k around diagonal

Running time: $\mathrm{O}(n k)$

Gives a good approximation of highly identical sequences

Constrain traceback to band of DP matrix (penalize big gaps)

Banded Alignment

Constraint path to band of width k around diagonal

$$
\text { Running time: } \mathrm{O}(n k)
$$

Gives a good approximation of highly identical sequences

Question: How to change recurrence to accomplish this?

x_{M}
Constrain traceback to band of DP matrix (penalize big gaps)
Figure source: $\underline{h t t p: / / j i n o m e . s t a n f o r d . e d u / s t a t 366 / p d f s / s t a t 366 ~ w i n 0607 ~ l e c t u r e 04 . p d f ~}$

Block Alignment

Divide input sequences into blocks of length t

v_{1}, \ldots, v_{t}	$v_{t+1}, \ldots, v_{2 t}$	\ldots	v_{m-t+1}, \ldots, v_{m}

w_{1}, \ldots, w_{t}	$w_{t+1}, \ldots, w_{2 t}$	\ldots	w_{n-t+1}, \ldots, w_{n}

Block Alignment

Divide input sequences into blocks of length t

V_{1}, \ldots, V_{t}	$V_{t+1}, \ldots, V_{2 t}$	-••	$\mathbf{V}_{m-t+1}, \ldots, V_{m}$
W_{1}, \ldots, W_{t}	$W_{t+1}, \ldots, W_{2 t}$	-••	W_{n-t+1}, \ldots, W_{n}

Figure 7.4 Two paths in a $40 \times 40 \mathrm{grid}$ partitioned into 16 subgrids of size 10×10. The black path (a) is a block path, while the gray path (b) is not.

Block Alignment

Divide input sequences into blocks of length t

V_{1}, \ldots, V_{t}	$V_{t+1}, \ldots, v_{2 t}$	\ldots	V_{m-t+1}, \ldots, V_{m}
	W_{1}, \ldots, W_{t}	$W_{t+1}, \ldots, W_{2 t}$	\ldots

Require that paths in edit graph pass through corners of blocks

$$
s[i, j]=\max \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ s[i-1, j]-\sigma, & \text { if } i>0, \\ s[i, j-1]-\sigma, & \text { if } j>0, \\ s[i-1, j-1]+\beta(i, j), & \text { if } i>0 \text { and } j>0\end{cases}
$$

$0 \leq i, j \leq t$ and $\beta(i, j)$ is max score alignment between block i of \mathbf{v} and block j of \mathbf{w}

Figure 7.4 Two paths in a $40 \times 40 \mathrm{grid}$ partitioned into 16 subgrids of size 10×10. The black path (a) is a block path, while the gray path (b) is not.

Block Alignment - First Attempt: Pre-compute $\beta(i, j)$

$0 \leq i, j \leq n / t$ and $\beta(i, j)$ is max score alignment between block i of \mathbf{v} and block j of \mathbf{w}

$$
s[i, j]=\max \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ s[i-1, j]-\sigma, & \text { if } i>0, \\ s[i, j-1]-\sigma, & \text { if } j>0, \\ s[i-1, j-1]+\beta(i, j), & \text { if } i>0 \text { and } j>0\end{cases}
$$

Block Alignment - First Attempt: Pre-compute $\beta(i, j)$

$0 \leq i, j \leq n / t$ and $\beta(i, j)$ is max score alignment between block i of \mathbf{v} and block j of \mathbf{w}

$$
s[i, j]=\max \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ s[i-1, j]-\sigma, & \text { if } i>0, \\ s[i, j-1]-\sigma, & \text { if } j>0, \\ s[i-1, j-1]+\beta(i, j), & \text { if } i>0 \text { and } j>0\end{cases}
$$

Question:

How much time to compute all $\beta(i, j)$?

Block Alignment - First Attempt: Pre-compute $\beta(i, j)$

$0 \leq i, j \leq n / t$ and $\beta(i, j)$ is max score alignment between block i of \mathbf{v} and block j of \mathbf{w}

$$
s[i, j]=\max \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ s[i-1, j]-\sigma, & \text { if } i>0, \\ s[i, j-1]-\sigma, & \text { if } j>0, \\ s[i-1, j-1]+\beta(i, j), & \text { if } i>0 \text { and } j>0\end{cases}
$$

Question:

How much time to compute all $\beta(i, j)$?
Computing $\beta(i, j)$ takes $O\left(t^{2}\right)$ time
There are $n / t \times n / t$ values $\beta(i, j)$
Total: $O\left(\frac{n}{t} \times \frac{n}{t} \times t^{2}\right)=O\left(n^{2}\right)$ time

Block Alignment - Four Russians Technique

Pre-compute and store all $\beta_{i j}$

Pre-compute and store all max weight alignments $S\left[\mathbf{v}^{\prime}, \mathbf{w}^{\prime}\right]$ of all

 pairs ($\mathbf{v}^{\prime}, \mathbf{w}^{\prime}$) of length t strings
Algorithm:

1. Precompute $S\left[\mathbf{v}^{\prime}, \mathbf{w}^{\prime}\right]$ where $\mathbf{v}^{\prime}, \mathbf{w}^{\prime} \in \Sigma^{t}$
2. Compute block alignment between \mathbf{v} and \mathbf{w} using S

$$
s[i, j]=\max \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ s[i-1, j]-\sigma, & \text { if } i>0, \\ s[i, j-1]-\sigma, & \text { if } j>0, \\ s[i-1, j-1]+S[v(i), w(j)], & \text { if } i>0 \text { and } j>0 .\end{cases}
$$

Block Alignment - Four Russians Technique

Pre-compute and store all $\beta_{i j}$

Pre-compute and store all max weight alignments $S\left[\mathbf{v}^{\prime}, \mathbf{w}^{\prime}\right]$ of all pairs ($\mathbf{v}^{\prime}, \mathbf{w}^{\prime}$) of length t strings

Question: How to choose t for DNA?

Algorithm:

1. Precompute $S\left[\mathbf{v}^{\prime}, \mathbf{w}^{\prime}\right]$ where $\mathbf{v}^{\prime}, \mathbf{w}^{\prime} \in \Sigma^{t}$
2. Compute block alignment between \mathbf{v} and \mathbf{w} using S

$$
s[i, j]=\max \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ s[i-1, j]-\sigma, & \text { if } i>0, \\ s[i, j-1]-\sigma, & \text { if } j>0, \\ s[i-1, j-1]+S[v(i), w(j)], & \text { if } i>0 \text { and } j>0 .\end{cases}
$$

Fastest Subquadratic Alignment* Algorithm

journal of computer and'system actences $20,18-31$ (1980) .

A Faster Algorithm Computing String Edit Distances*
William J. Maek
MIT Laboratory for Computer Science, Cambridge, Massachusetts 02139

AND
Michael S. Paterson
School of Comptuter Science, University of Warwick, Coventry, Warwicks, United Kingdom
Received September 25, 1978; revised August 6, 1979

Edit distance in
 $0\left(n^{2} / \log n\right)$ time

Barely subquadratic!

Want: $O\left(n^{2-\varepsilon}\right)$ time where $\varepsilon>0$

Fastest Subquadratic Alignment* Algorithm

Edit distance in
 $0\left(n^{2} / \log n\right)$ time

A Faster Algorithm Computing String Edit Distances*
William J. Masek
MIT Laboratory for Computer Science, Cambridge, Massachusetts 02139

Barely subquadratic!

AND
Michaed S. Paterson
School of Comptuter Science, University of Warwick, Coventry, Warwicks, United Kingdom
Received September 25, 1978; revised August 6, 1979

Want: $\mathrm{O}\left(n^{2-\varepsilon}\right)$ time where $\varepsilon>0$

Question: Is $n^{2-\varepsilon}$ in $\mathrm{O}\left(n^{2} / \log n\right)$ for any $\varepsilon>0$?

Hardness Result for Edit Distance [STOC 2015]

Edit Distance Cannot Be Computed
 in Strongly Subquadratic Time
 (unless SETH is false)

$\mathrm{O}\left(n^{2-\varepsilon}\right)$ time where $\varepsilon>0$

Arturs Backurs* ${ }^{*} \quad$ Piotr Indyk ${ }^{\dagger}$
MIT
MIT

Abstract

The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the minimum number of insertions, deletions or substitutions of symbols needed to transform one string into another. The problem of computing the edit distance between two strings is a classical computational task, with a well-known algorithm based on dynamic programming. Unfortunately, all known algorithms for this problem run in nearly quadratic time.

In this paper we provide evidence that the near-quadratic running time bounds known for the problem of computing edit distance might be tight. Specifically, we show that, if the edit distance can be computed in time $O\left(n^{2-\delta}\right)$ for some constant $\delta>0$, then the satisfiability of conjunctive normal form formulas with N variables and M clauses can be solved in time $M^{O(1)} 2^{(1-\epsilon) N}$ for a constant $\epsilon>0$. The latter result would violate the Strong Exponential Time Hypothesis, which postulates that such algorithms do not exist.

For 40 years, computer scientists looked for a solution that doesn't exist [1]

In biology n does not go to infinity [2]

August 14, 2015 in reviews | Tags: complexity theory, edit distance, Needleman-Wunsch algorithm, strong exponential time hypothesis

I recently read a "brainiac" column in the Boston Globe titled "For 40 years, computer scientists looked for a solution that doesn't exist" that caused me to facepalm so violently I now have pain in my right knee.

[1] Boston Globe, Aug 10, 2015
[2] Bits of DNA Blog, Lior Pachter

Take Home Messages

1. Global alignment in $\mathrm{O}(m n)$ time and $\mathrm{O}(m)$ space

- Hirschberg algorithm

2. Block alignment can be done in subquadratic time

- Four Russians Technique: $0\left(n^{2} / \log n\right)$ time

3. Global alignment cannot be done in $\mathrm{O}\left(n^{2-\varepsilon}\right)$ time under SETH

Reading:

-Jones and Pevzner. Chapters 7.1-7.4

- Lecture notes

