
CS 466 – Introduction to Bioinformatics – Lecture 4

Mohammed El-Kebir

September 9, 2018

Document history:

• 9/7/2018: Initial version.

• 9/9/2018: Included revised analysis of naive fitting alignment.

Contents

1 Naive Fitting Alignment 1

2 Naive Local Alignment 2

3 Naive Affine Gap Penalty Global Alignment 2

1 Naive Fitting Alignment

In the fitting alignment problem we are given two strings v ∈ Σm and w ∈ Σn, a scoring
function δ : (Σ ∪ {−}) × (Σ ∪ {−}) → R, and are asked to find a substring of w whose
alignment with v has maximum global alignment score among all alignments of v and all
substrings of w.

How do we solve this? A naive approach would be to simply generate all substrings of
w. Each substring w′ corresponds to an instance of the global alignment problem, which
can be solved in O(m|w′|) time. What is the total running time?

We start by observing that if w′ is the empty string, then the optimal alignment score
would be trivially 0. So we can assume that |w′| ≥ 1, resulting in the following running
time.

n

i=1

n

j=i

O(m(j − i)) = O(m)
n

i=1

n

j=i

(j − i). (1)

The number of substrings of length ℓ = 1 is n. How many substrings are there of length
ℓ = 2? There are n− 1 pairs (i, i+1) where 1 ≤ i ≤ n− 1. Thus, there are n− 1 substrings

1

of w of length ℓ = 2. Similarly, there are n−2 substrings of w of length ℓ = 3 corresponding
to pairs (i, i+ 2) where 1 ≤ i ≤ n− 2, etc. Thus we have the following equation.

n

i=1

n

j=i+1

(j − i) =
n

ℓ=1

ℓ(n− ℓ+ 1). (2)

This can we rewritten as

n

ℓ=1

ℓ(n− ℓ+ 1) =
n

ℓ=1

(ℓn− ℓ2 + ℓ) (3)

= n
n

ℓ=1

ℓ−
n

ℓ=1

ℓ2 +
n

ℓ=1

ℓ. (4)

Using that
n

i=1 i = n(n+ 1)/2 and
n

i=1 i
2 = n(n+ 1)(2n+ 1)/6, we obtain

n
n

ℓ=1

ℓ−
n

ℓ=1

ℓ2 +
n

ℓ=1

ℓ = (n+ 1) · n(n+ 1)

2
− n(n+ 1)(2n+ 1)

6
(5)

=
n3 + 3n2 + 2n

6
. (6)

This amounts to a running time of

O(m)
n3 + 3n2 + 2n

6
= O(mn3). (7)

2 Naive Local Alignment

In the local alignment problem we are given two strings v ∈ Σm and w ∈ Σn, a scoring func-
tion δ : (Σ∪{−})× (Σ∪{−}) → R, and are asked to find a substring v′ of v and a substring
w′ of w whose alignment has maximum global alignment score among all alignments of all
substrings of v and w.

Similarly to the naive approach for fitting alignment, we could simply generate all sub-
strings of v and w. Each pair (v′,w′) of substrings corresponds to an instance of the global
alignment problem, which can be solved in O(|v′||w′|) time. What is the total running time
when considering all pairs of possible substrings? Recall that aligning v and w has time
O(|v||w|) = O(mn). Thus, here we want to compute O(

v′ |v′|

w′ |w′|).

Above, we computed that the sum of the lengths of substrings of w with length n = |w| is
(n3−3n2+2n)/6. That is,

w′ |w′| = (n3−3n2+2n)/6. Thus,

v′ |v′| = (m3−3m2+2m)/6.

This leads to a running time of O(m3n3).

3 Naive Affine Gap Penalty Global Alignment

In this case, the edit graph contains i+ j incoming edges for each vertex (i, j). The running
time is simply the total number of edges, as each edge < (i′, j′), (i, j) > requires a constant

2

time computation that is only performed at the target vertex (i, j). We thus have

m

i=0

n

j=0

(i+ j) =
m

i=0

i · (n+ 1) +

n

j=0

j

. (8)

Using that
n

j=0 j =
n

j=1 j = n(n+ 1)/2, we get

m

i=0

[i · (n+ 1) + n(n+ 1)/2] =
(m+ 1)n(n+ 1)

2
+ (n+ 1)

m

i=0

i (9)

=
(m+ 1)n(n+ 1) + (n+ 1)m(m+ 1)

2
(10)

= O(mn2 + nm2). (11)

So if m = n, this would lead to a cubic algorithm. This is worse than the O(mn)
algorithm presented in class for global alignment with affine gap penalties.

3

