CS 466 – Introduction to Bioinformatics – Lecture 4

Mohammed El-Kebir

September 9, 2018

Document history:

- 9/7/2018: Initial version.
- 9/9/2018: Included revised analysis of naive fitting alignment.

Contents

1	Naive Fitting Alignment	1
2	Naive Local Alignment	2
3	Naive Affine Gap Penalty Global Alignment	2

1 Naive Fitting Alignment

In the fitting alignment problem we are given two strings $\mathbf{v} \in \Sigma^m$ and $\mathbf{w} \in \Sigma^n$, a scoring function $\delta : (\Sigma \cup \{-\}) \times (\Sigma \cup \{-\}) \rightarrow \mathbb{R}$, and are asked to find a substring of \mathbf{w} whose alignment with \mathbf{v} has maximum global alignment score among *all* alignments of \mathbf{v} and *all* substrings of \mathbf{w} .

How do we solve this? A naive approach would be to simply generate all substrings of **w**. Each substring **w**' corresponds to an instance of the global alignment problem, which can be solved in $O(m|\mathbf{w}'|)$ time. What is the total running time?

We start by observing that if \mathbf{w}' is the empty string, then the optimal alignment score would be trivially 0. So we can assume that $|\mathbf{w}'| \ge 1$, resulting in the following running time.

$$\sum_{i=1}^{n} \sum_{j=i}^{n} O(m(j-i)) = O(m) \sum_{i=1}^{n} \sum_{j=i}^{n} (j-i).$$
(1)

The number of substrings of length $\ell = 1$ is n. How many substrings are there of length $\ell = 2$? There are n-1 pairs (i, i+1) where $1 \le i \le n-1$. Thus, there are n-1 substrings

of **w** of length $\ell = 2$. Similarly, there are n-2 substrings of **w** of length $\ell = 3$ corresponding to pairs (i, i+2) where $1 \le i \le n-2$, etc. Thus we have the following equation.

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} (j-i) = \sum_{\ell=1}^{n} \ell(n-\ell+1).$$
(2)

This can we rewritten as

$$\sum_{\ell=1}^{n} \ell(n-\ell+1) = \sum_{\ell=1}^{n} (\ell n - \ell^2 + \ell)$$
(3)

$$= n \sum_{\ell=1}^{n} \ell - \sum_{\ell=1}^{n} \ell^{2} + \sum_{\ell=1}^{n} \ell.$$
(4)

Using that $\sum_{i=1}^{n} i = n(n+1)/2$ and $\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$, we obtain

$$n\sum_{\ell=1}^{n}\ell - \sum_{\ell=1}^{n}\ell^{2} + \sum_{\ell=1}^{n}\ell = (n+1)\cdot\frac{n(n+1)}{2} - \frac{n(n+1)(2n+1)}{6}$$
(5)

$$=\frac{n^3+3n^2+2n}{6}.$$
 (6)

This amounts to a running time of

$$O(m)\frac{n^3 + 3n^2 + 2n}{6} = O(mn^3).$$
(7)

2 Naive Local Alignment

In the local alignment problem we are given two strings $\mathbf{v} \in \Sigma^m$ and $\mathbf{w} \in \Sigma^n$, a scoring function $\delta : (\Sigma \cup \{-\}) \times (\Sigma \cup \{-\}) \to \mathbb{R}$, and are asked to find a substring \mathbf{v}' of \mathbf{v} and a substring \mathbf{w}' of \mathbf{w} whose alignment has maximum global alignment score among *all* alignments of *all* substrings of \mathbf{v} and \mathbf{w} .

Similarly to the naive approach for fitting alignment, we could simply generate all substrings of \mathbf{v} and \mathbf{w} . Each pair $(\mathbf{v}', \mathbf{w}')$ of substrings corresponds to an instance of the global alignment problem, which can be solved in $O(|\mathbf{v}'||\mathbf{w}'|)$ time. What is the total running time when considering all pairs of possible substrings? Recall that aligning \mathbf{v} and \mathbf{w} has time $O(|\mathbf{v}||\mathbf{w}|) = O(mn)$. Thus, here we want to compute $O(\sum_{\mathbf{v}'} |\mathbf{v}'| \sum_{\mathbf{w}'} |\mathbf{w}'|)$.

Above, we computed that the sum of the lengths of substrings of \mathbf{w} with length $n = |\mathbf{w}|$ is $(n^3 - 3n^2 + 2n)/6$. That is, $\sum_{\mathbf{w}'} |\mathbf{w}'| = (n^3 - 3n^2 + 2n)/6$. Thus, $\sum_{\mathbf{v}'} |\mathbf{v}'| = (m^3 - 3m^2 + 2m)/6$. This leads to a running time of $O(m^3n^3)$.

3 Naive Affine Gap Penalty Global Alignment

In this case, the edit graph contains i + j incoming edges for each vertex (i, j). The running time is simply the total number of edges, as each edge $\langle (i', j'), (i, j) \rangle$ requires a constant

time computation that is only performed at the target vertex (i, j). We thus have

$$\sum_{i=0}^{m} \sum_{j=0}^{n} (i+j) = \sum_{i=0}^{m} \left[i \cdot (n+1) + \sum_{j=0}^{n} j \right].$$
 (8)

Using that $\sum_{j=0}^{n} j = \sum_{j=1}^{n} j = n(n+1)/2$, we get

$$\sum_{i=0}^{m} \left[i \cdot (n+1) + n(n+1)/2\right] = \frac{(m+1)n(n+1)}{2} + (n+1)\sum_{i=0}^{m} i \tag{9}$$

$$=\frac{(m+1)n(n+1) + (n+1)m(m+1)}{2}$$
(10)

$$= O(mn^2 + nm^2). (11)$$

So if m = n, this would lead to a cubic algorithm. This is worse than the O(mn) algorithm presented in class for global alignment with affine gap penalties.