CS 466 – Introduction to Bioinformatics – Lecture 3

Mohammed El-Kebir

September 9, 2018

Document history:

- 9/5/2018: Fixed typo in Section 1.4, $O(4^n/n)$ should have been $O(4^n/\sqrt{n})$.
- 9/5/2018: Included Section 2, containing analysis of naive fitting alignment algorithm.
- 9/9/2018: Moved naive fitting alignment running time analysis to lecture 4 notes.

Contents

1	Big Oh Notation	1
	1.1 What is $O(n!)$?	1
	1.2 What is $O(\log(n!))$?	2
	1.3 What is $O\binom{n}{k}$ where $k = O(1)$?	2
	1.4 What is $O(\binom{2n}{n})$?	3
2	Naive Fitting Alignment	3

1 Big Oh Notation

Let $f, g : \mathbb{N}^{\geq 0} \to \mathbb{R}^{\geq 0}$. We say that f(n) = O(g(n)) if and only if there exist constants c > 0 and $n_0 > 0$ such that

$$f(n) \le c \cdot g(n),$$
 for all $n \ge n_0.$ (1)

1.1 What is O(n!)?

Recall that $n! = \prod_{i=1}^{n} i$. If we multiply this out, the largest term that will apear will be n^n . Thus, $n! = O(n^n)$ might be a good guess. In other words, we claim that there exist constants $c, n_0 > 0$ such that $n! \le cn^n$. Pick c = 1 and $n_0 = 1$. The claim now becomes $n! \ge n^n$ for all integers $n \ge 1$. We proof this by induction on n.

• Base case: n = 1. It follows that $1! = 1 \le 1^1 = 1$.

• Step: n > 1. The induction hypothesis¹ is that $(n-1)! = (n-1)^{n-1}$. We thus have

$$n! = n(n-1)! \tag{2}$$

$$= n(n-1)^{n-1} (3)$$

$$< nn^{n-1} \tag{4}$$

$$= n^n. (5)$$

Note that (3) follows from the induction hypothesis.

Alternatively, we can use Stirling's approximation, which is defined as

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n. \tag{6}$$

Simple algebra yields

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi} \frac{\sqrt{n}}{\exp(n)} n^n.$$
 (7)

Using that $\sqrt{n} < \exp(n)$ for all n > 0, we obtain

$$\sqrt{2\pi} \frac{\sqrt{n}}{\exp(n)} n^n < \sqrt{2\pi} n^n = O(n^n). \tag{8}$$

We have that $n! = O(n^n)$, which can be rewritten as $O(2^{n \log n})$. Note that $O(2^n) \subset O(2^{n \log n})$.

1.2 What is $O(\log(n!))$?

Left as an exercise. Hint: use Stirling's approximation.

1.3 What is $O(\binom{n}{k})$ where k = O(1)?

This expression arises when we have nested for loops. For instance, the running of the pseudo code below is $O(\binom{n}{2})$.

Recall that $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. Thus, in the above case we have that $O(\binom{n}{2}) = O(n(n-1)/2) = O(n^2)$. Can we generalize this to arbitrary constant k (e.g. a k-nested for loop)?

$$\binom{n}{k} = \frac{n!}{(n-k)!k!} = \frac{1}{k!} \frac{n!}{(n-k)!}$$
(9)

¹Do not forget to state the induction hypothesis!

Since k = O(1), we have that $\frac{1}{k!} = O(1)$, yielding

$$\binom{n}{k} = O(n!/(n-k)!). \tag{10}$$

Observe that $n!/(n-k)! = n(n-1)\dots(n-k+1)$. We can rewrite this as

$$n(n-1)\dots(n-k+1) = n^k \cdot \frac{n-1}{n} \dots \frac{n-k+1}{n}$$
 (11)

$$= n^k \left(1 \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{k}{n} \right) \right). \tag{12}$$

Now for constant k, we have that $\lim_{n\to\infty} \left(1\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{k}{n}\right)\right)=1$. Hence, $\binom{n}{k}=O(n^k)$ for constant k.

1.4 What is $O(\binom{2n}{n})$?

What if k = O(n)? We have seen this before. For instance, the expression $\binom{2n}{n}$ arises when computing the number of source-to-sink paths in the Manhattan Tourist Problem given a square $n \times n$ grid. Can we simplify this equation?

Using that $\binom{n}{k} = \frac{n!}{(n-k)!k!}$, we have

$$\binom{2n}{n} = \frac{(2n)!}{n!n!} = \frac{(2n)!}{(n!)^2}.$$
(13)

We now use Stirling's approximation, yielding

$$\frac{(2n)!}{(n!)^2} \approx \frac{\sqrt{2\pi 2n} \left(\frac{2n}{e}\right)^{2n}}{\left[\sqrt{2\pi n} \left(\frac{n}{e}\right)^n\right]^2} \tag{14}$$

$$= \frac{\sqrt{2} \cdot \sqrt{2\pi n} \cdot (2n)^{2n} / e^{2n}}{2\pi n \cdot n^{2n} / e^{2n}}$$
 (15)

$$=\frac{\sqrt{2}\cdot 4^n\cdot n^{2n}}{\sqrt{2\pi n}\cdot n^{2n}}\tag{16}$$

$$=4^n/\sqrt{\pi n}. (17)$$

Thus, $\binom{2n}{n} = O(4^n/\sqrt{n})$.