CS 466 Introduction to Bioinformatics Lecture 3

Mohammed El-Kebir
September 5, 2018

Course Announcements

Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Mondays, 3:15-4:15pm

TA:

- Anusri Pampari (pampari2)
- Office hours: Thursdays, 11:00-11:59am in SC 4105

Piazza: (please sign up)

- https://piazza.com/class\#fall2018/cs466

Outline

1. Running time recap
2. Edit distance recap
3. Global alignment
4. Fitting alignment
5. Gapped alignment

Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time

Running Time Analysis

- The running time of an algorithm A for problem Π is the maximum number of steps that A will take on any instance of size $n=|X|$
- Asymptotic running time ignores constant factors using Big O notation

$$
\begin{aligned}
& f(n)=O(g(n)) \text { provided there } \\
& \text { exists } c>0 \text { and } n_{0} \geq 0 \text { such that } \\
& f(n) \leq c g(n) \text { for all } n \geq n_{0}
\end{aligned}
$$

Note that $O(g(n))$ is a set of functions. Thus, $f(n)=O(g(n))$ actually means $f(n) \in O(g(n))$

Running Time Analysis - Example

$f(n)$ is $O(g(n))$ provided there exists $c>0$ and $n_{0} \geq 0$ such that

$$
f(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

Computed by Wolfram|Alpha

Computed by Wolfram|Alpha

Pick $c=1000$ and $n_{0}=3$. Then, $f(n) \leq c g(n)$ for all $n \geq n_{0}$.

Running Time Analysis - Guidelines

- $O\left(n^{a}\right) \subset O\left(n^{b}\right)$ for any positive constants $a<b$
- For any constants $a, b>0$ and $c>1$,
$O(a) \subset O(\log n) \subset O\left(n^{b}\right) \subset O\left(c^{n}\right)$
- We can multiply to learn about other functions. For any constants $a, b>0$ and $c>1$, $O(a n)=O(n) \subset O(n \log n) \subset O\left(n n^{b}\right)=O\left(n^{b+1}\right) \subset O\left(n c^{n}\right)$
- Base of the logarithm is a constant and can be ignored. For any constants $a, b>1$, $O\left(\log _{a} n\right)=O\left(\log _{b} n / \log _{b} a\right)=O\left(1 /\left(\log _{b} a\right) \log _{b} n\right)=O\left(\log _{b} n\right)$

Running Time Analysis - Guidelines

- $O\left(n^{a}\right) \subset O\left(n^{b}\right)$ for any positive constants $a<b$
- For any constants $a, b>0$ and $c>1$,

$$
O(a) \subset O(\log n) \subset O\left(n^{b}\right) \subset O\left(c^{n}\right)
$$

Big Oh	Name
$O(1)$	Constant
$O(\log n)$	Logarithmic
$O(n)$	Linear
$O\left(n^{2}\right)$	Quadratic
$O\left(n^{c}\right)=O(\operatorname{poly}(n))$	Polynomial
$O\left(2^{\text {poly }(n)}\right)$	Exponential

- We can multiply to learn about other functions. For any constants $a, b>0$ and $c>0$,

$$
O(a n)=O(n) \subset O(n \log n) \subset O\left(n n^{b}\right)=O\left(n^{b+1}\right) \subset O\left(n c^{n}\right)
$$

- Base of the logarithm is a constant and can be ignored. For any constants $a, b>0$, $O\left(\log _{a} n\right)=O\left(\log _{b} n / \log _{b} a\right)=O\left(1 /\left(\log _{b} a\right) \log _{b} n\right)=O\left(\log _{b} n\right)$

Running Time Analysis - More Examples

- Recall that $n!=\prod_{i=1}^{n} i$

Question: What is $O(n!)$?

Running Time Analysis - More Examples

- Recall that $n!=\prod_{i=1}^{n} i$ Question: What is $O(n!)$?

Stirling's approximation: $n!\approx \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}=\sqrt{2 \pi} \frac{\sqrt{n}}{\exp (n)} n^{n} \stackrel{(*)}{=} O\left(n^{n}\right)=O\left(2^{n \log n}\right)$
(*) $: \sqrt{n} / \exp (n)<1$ for all $n>0$
Question: What is $O(\log (n!))$?

Running Time Analysis - More Examples

- Recall that $n!=\prod_{i=1}^{n} i \quad$ Question: What is $O(n!)$?

Stirling's approximation: $n!\approx \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}=\sqrt{2 \pi} \frac{\sqrt{n}}{\exp (n)} n^{n} \stackrel{(*)}{=} O\left(n^{n}\right)=O\left(2^{n \log n}\right)$
$\left(^{*}\right): \sqrt{n} / \exp (n)<1$ for all $n>0$
Question: What is $O(\log (n!))$?

- For constant $k>0$ it holds that $\binom{n}{k}=O\left(n^{k}\right)$

Running Time Analysis - More Examples

- Recall that $n!=\prod_{i=1}^{n} i$

Question: What is $O(n!)$?
Stirling's approximation: $n!\approx \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}=\sqrt{2 \pi} \frac{\sqrt{n}}{\exp (n)} n^{n} \stackrel{(*)}{=} O\left(n^{n}\right)=O\left(2^{n \log n}\right)$
(*) $: \sqrt{n} / \exp (n)<1$ for all $n>0$
Question: What is $O(\log (n!))$?

- For constant $k>0$ it holds that $\binom{n}{k}=O\left(n^{k}\right)$
- Number of source-to-sink paths in the Manhattan Tourist Problem on a square $n \times n$ grid is $\binom{2 n}{n}$
Question: What is $O\left(\binom{2 n}{n}\right)$?

Running Time Analysis - More Examples

- Recall that $n!=\prod_{i=1}^{n} i$

Question: What is $O(n!)$?
Stirling's approximation: $n!\approx \sqrt{2 \pi n}\left(\frac{n}{\mathrm{e}}\right)^{n}=\sqrt{2 \pi} \frac{\sqrt{n}}{\exp (n)} n^{n} \stackrel{(*)}{=} O\left(n^{n}\right)=O\left(2^{n \log n}\right)$
(*) $^{*}: \sqrt{n} / \exp (n)<1$ for all $n>0$
Question: What is $O(\log (n!))$?

- For constant $k>0$ it holds that $\binom{n}{k}=O\left(n^{k}\right)$
- Number of source-to-sink paths in the Manhattan Tourist Problem on a square $n \times n$ grid is $\binom{2 n}{n}$
Question: What is $\left.O\binom{2 n}{n}\right)$?
When do we achieve this?

Outline

1. Running time recap
2. Edit distance recap
3. Global alignment
4. Fitting alignment
5. Gapped alignment

Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time

Alignment

An alignment between two strings \mathbf{v} (of m characters) and \mathbf{w} (of n characters) is a $2 \times k$ matrix, where $k=\{\max (m, n), \ldots, m+n\}$ such that the first row contains the characters of \mathbf{v} in order, the second row contains the characters of \mathbf{w} in order, and spaces may be interspersed throughout each.

Input		Output								
		Insertion				Match	Mismatch			Insertion
v:KITTEN	$(m=6)$	V:	K	-	I	T	T	E	N	-
w: SITTING	$(n=7)$	W:	S	I	-	T	T	I	N	G
			sma		eleti		Matc		Mat	

Note: There is no -/-

Edit Distance

Edit Distance problem: Given strings $\mathbf{v} \in \Sigma^{m}$ and $\mathbf{w} \in \Sigma^{n}$, compute the minimum number $d(\mathbf{v}, \mathbf{w})$ of elementary operations to transform \mathbf{v} into \mathbf{w}.

Optimal substructure:

Edit distance obtained from edit distance of prefix of string.

Computing Edit Distance using Dynamic Programming

$$
d[i, j]=\min \left\{\begin{array}{l}
0 \\
d[i-1, j]+1 \\
d[i, j-1]+1 \\
d[i-1, j-1]+1 \\
d[i-1, j-1]
\end{array}\right.
$$

if $i=0$ and $j=0$,
if $i>0$,
if $j>0$,
if $i>0, j>0$ and $v_{i} \neq w_{j}$,
if $i>0, j>0$ and $v_{i}=w_{j}$.

	deletion
w_{i}	insertion
v_{i}	sma
w_{i}	
	match

	W		A		T	C
G						
	V	0	1	2	3	4
A	0	0	1	2	3	4
1	1	0	1	2	3	
T	2	2	1	0	1	2
	3	3	2	1	1	1
	4	4	3	2	2	2

Weighted Edit Distance - Practice Problem

- Compute weighted edit distance between $\mathbf{v}=\mathrm{AGT}$ and $\mathbf{w}=$ ATCT.

$$
d[i, j]=\min \begin{cases}0, & \text { if } i=0 \text { and } j=0, \\ d[i-1, j]+1, & \text { if } i>0, \\ d[i, j-1]+1, & \text { if } j>0, \\ d[i-1, j-1]+2, & \text { if } i>0, j>0 \text { and } v_{i} \neq w_{j}, \\ d[i-1, j-1], & \text { if } i>0, j>0 \text { and } v_{i}=w_{j} .\end{cases}
$$

Edit Distance - Additional Insights

- An alignment corresponds to a series of elementary operations

```
Example
    T-ACAT-
    TGAT-AT
```


Edit Distance - Additional Insights

- An alignment corresponds to a series of elementary operations

```
Example
    T-ACAT-
    TGAT-AT
TACAT \xrightarrow{ ins TGACAT }{~}\mathrm{ subst TGATAT 年 TGATT }\xrightarrow{}{\mathrm{ subst }}\mathrm{ TGATA 年 TGATAT}
```

- But not every series of elementary operations corresponds to an alignment! Why?
- TACAT $\xrightarrow{\text { subst }}$ GACAT $\xrightarrow{\text { del }}$ GAAT $\xrightarrow{\text { ins }}$ TGAAT $\xrightarrow{\text { ins }}$ TGATAT
-TAC-AT TGA-TAT
- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGATAT T-ACAT TGATAT
- TACAT $\xrightarrow{\text { ins }}$ TGACAT $\xrightarrow{\text { subst }}$ TGAGAT $\xrightarrow{\text { subst }}$ TGATAT

Distance Function / Metric

A distance function (metric) on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ s.t. for all $x, y, z \in X$:
i. $d(x, y) \geq 0$
ii. $d(x, y)=0$ if and only if $x=y$
iii. $d(x, y)=d(y, x)$
iv. $d(x, y) \leq d(x, z)+d(z, y)$
[non-negativity]
[identity of indiscernibles]
[symmetry]
[triangle inequality]

Question: Is edit distance a distance function?

Edit Distance is a Distance Function

Edit distance $d(\mathbf{v}, \mathbf{w})$ is the minimum number of elementary operations to transform $\mathbf{v} \in \Sigma^{*}$ into $\mathbf{w} \in \Sigma^{*}$.

Claim: edit distance is a distance function.

```
Proof: Let u,v,w 江*.
i. }\quadd(\mathbf{v},\mathbf{w})\geq
[non-negativity]
Edit distance is defined by an alignment. This in turn uniquely determines a series of elementary operations, each with cost either 0 (match) or 1 (otherwise). Thus, \(d(\mathbf{v}, \mathbf{w}) \geq 0\).
```


Edit Distance is a Distance Function

Edit distance $d(\mathbf{v}, \mathbf{w})$ is the minimum number of elementary operations to transform $\mathbf{v} \in \Sigma^{*}$ into $\mathbf{w} \in \Sigma^{*}$.

Claim: edit distance is a distance function.

Proof: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Sigma^{*}$.
ii. $\quad d(\mathbf{v}, \mathbf{w})=0$ if and only if $\mathbf{v}=\mathbf{w}$
[identity of indiscernibles] $(=>)$ By the premise, $d(\mathbf{v}, \mathbf{w})=0$. By definition, the optimal alignment can only consist of operations with cost 0 . That is, the alignment consist of only matches. Thus, $\mathbf{v}=\mathbf{w}$. (<=) By the premise, $\mathbf{v}=\mathbf{w}$. Thus, there exists an alignment where every pair of columns is a match. This means that $|\mathbf{v}|=|\mathbf{w}|$ and each letter v_{i} equals w_{i} (where $i \in$ $[|\mathbf{v}|])$. Moreover, only the match operations has cost 0 , the other operations have cost 1. Hence, this is the optimal alignment with cost $d(\mathbf{v}, \mathbf{w})=0$.

Edit Distance is a Distance Function

Edit distance $d(\mathbf{v}, \mathbf{w})$ is the minimum number of elementary operations to transform $\mathbf{v} \in \Sigma^{*}$ into $\mathbf{w} \in \Sigma^{*}$.

Claim: edit distance is a distance function.

Proof: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Sigma^{*}$.
iii. $\quad d(\mathbf{v}, \mathbf{w})=d(\mathbf{w}, \mathbf{v})$
[symmetry]
Let $\mathbf{A}=\left[a_{i, j}\right]$ be the optimal alignment corresponding to $d(\mathbf{v}, \mathbf{w})$, i.e. \mathbf{A} is an $2 \times k$ matrix where $k \in\{\max (|\mathbf{v}|,|\mathbf{w}|), \ldots,|\mathbf{v}|+|\mathbf{w}|\}$. Define the function $f(\mathbf{A})=\mathbf{B}$ such that \mathbf{B} is obtained by interchanging the two rows of \mathbf{A}. Since the cost of any insertion, deletion and mismatch is 1 , we have that alignment \mathbf{B} has cost $d(\mathbf{v}, \mathbf{w})$. The existence of an alignment from \mathbf{w} to \mathbf{v} with cost less than $d(\mathbf{v}, \mathbf{w})$, yields a contradiction as it implies that \mathbf{A} is not an optimal alignment from \mathbf{v} to \mathbf{w}. Hence, $d(\mathbf{w}, \mathbf{v})=d(\mathbf{v}, \mathbf{w})$.

Edit Distance is a Distance Function

Edit distance $d(\mathbf{v}, \mathbf{w})$ is the minimum number of elementary operations to transform $\mathbf{v} \in \Sigma^{*}$ into $\mathbf{w} \in \Sigma^{*}$.

Claim: edit distance is a distance function.

Proof: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Sigma^{*}$.
iv. $d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{u})+d(\mathbf{u}, \mathbf{w})$
[triangle inequality]
Assume for a contradiction that $d(\mathbf{v}, \mathbf{w})>d(\mathbf{v}, \mathbf{u})+d(\mathbf{u}, \mathbf{w})$. Let S be the sequence of elementary operations for transforming \mathbf{v} into \mathbf{u}. Let S^{\prime} be the sequence of elementary operations for transforming \mathbf{u} into \mathbf{w}. Note that $d(\mathbf{v}, \mathbf{u})=|S|$ and $d(\mathbf{u}, \mathbf{w})=\left|S^{\prime}\right|$. Concatenate S and S^{\prime} and remove redundant operations, yielding sequence $S^{\prime \prime}$. By definition, $\left|S^{\prime \prime}\right| \leq|S|+\left|S^{\prime}\right|$. We can obtain an alignment of \mathbf{v} and \mathbf{w} from $S^{\prime \prime}$ with cost $\left|S^{\prime \prime}\right| \leq d(\mathbf{v}, \mathbf{u})+d(\mathbf{u}, \mathbf{w})$. This yields a contradiction with $d(\mathbf{v}, \mathbf{w})>d(\mathbf{v}, \mathbf{u})+d(\mathbf{u}, \mathbf{w})$ being the cost of the optimal alignment of \mathbf{v} and \mathbf{w}.

Dynamic Programming as a Graph Problem

Manhattan Tourist Problem:

Every path in directed graph is a possible tourist path. Find maximum weight path. Running time: $O(\mathrm{mn})=O(|E|)$

End

3 cent
5 cent

Change Problem: Make M cents using minimum number of coins $\mathbf{c}=(1,3,5)$. Every path in directed graph is a possible change. Find shortest path. Running time: $O(M n)=O(|E|)$

Edit Distance as a Graph Problem

Edit Distance problem: Given edit graph $G=(V, E)$, with edge weights $\mathrm{c}: E \rightarrow\{0,1\}$. Find shortest path from $(0,0)$ to (m, n).

Alignment is a path from $(0,0)$ to (m, n)

Edit graph is a weighed, directed grid graph $G=(V, E)$ with source vertex $(0,0)$ and target vertex (m, n). Each edge (i, j) has weight $[i, j]$ corresponding to edit cost: deletion (1), insertion (1), mismatch (1) and match (0).

Outline

1. Running time recap
2. Edit distance recap
3. Global alignment
4. Fitting alignment
5. Gapped alignment

Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time

Biological Sequence Alignment

- Weighted edit distance: find alignment with minimum distance
- Shortest path in weighted edit graph
- Sequence alignment: find alignment with maximum similarity
- Longest path in weighted edit graph
- Score function:

$$
\delta:(\Sigma \cup\{-\})^{2} \rightarrow \mathbb{R}
$$

\square

$$
\delta\left(v_{i}, w_{j}\right)
$$

match

$$
\delta\left(v_{i},-\right) \quad \delta\left(-, w_{j}\right)
$$

Question: What is an example of δ ?

Scoring Matrices

Transitions: interchanges among purines
(two rings) or pyrimidines (one ring)

- A <--> G
- $\mathrm{C}<-->\mathrm{T}$

Transversions: interchanges between purines (two rings) and pyrimidines (one ring)

- A <--> C, A <--> T
- G <--> C, G <--> T

Transitions more likely than transversions!

Scoring Matrices

Transitions: interchanges among purines (two rings) or pyrimidines (one ring)

- A <--> G
- $C<-->T$

Transversions: interchanges between purines (two rings) and pyrimidines (one ring)

- A <--> C, A <--> T
- $G<-->C, G<-->T$

δ	A	T	C	G	-
A	1	-2	-2	-1	-1
T	-2	1	-1	-2	-1
C	-2	-1	1	-2	-1
G	-1	-2	-2	1	-1
-	-1	-1	-1	-1	$-\infty$

Transitions more likely than transversions!

Global Alignment - Needleman-Wunsch Algorithm

Global Alignment problem: Given strings $\mathbf{v} \in \Sigma^{m}$ and $\mathbf{w} \in \Sigma^{n}$ and scoring function δ, find alignment with maximum score.

- An alignment is a source-to-sink path in the edit graph
- An alignment $\mathbf{A}=\left[a_{i, j}\right]$ is a $2 \times k$ matrix s.t. (i) $k=\{\max (m, n), \ldots, m+n\}$, (ii) $a_{i, j} \in \Sigma \cup\{-\}$ and (iii) there is no $j \in[k]$ where $a_{1, j}=a_{2, j}=-$

$$
s[i, j]=\max \left\{\begin{array}{lll}
0, & \text { if } i=0 \text { and } j=0, & \\
s[i-1, j]+\delta\left(v_{i},-\right), & \text { if } i>0, & \text { deletion } \\
s[i, j-1]+\delta\left(-, w_{j}\right), & \text { if } j>0, & \text { insertion } \\
s[i-1, j-1]+\delta\left(v_{i}, w_{j}\right), & \text { if } i>0 \text { and } j>0 . & \text { match/ } \\
\text { mismatch }
\end{array}\right.
$$

Demonstration

- http://alfehrest.org/sub/nwa/index.html
- $\mathbf{v}=$ ATGTTAT and $\mathbf{w}=$ ATCGTAC.

δ	A	T	C	G	-
A	1	-2	-2	-1	-1
T	-2	1	-1	-2	-1
C	-2	-1	1	-2	-1
G	-1	-2	-2	1	-1
-	-1	-1	-1	-1	$-\infty$

Outline

1. Running time recap
2. Edit distance recap
3. Global alignment
4. Fitting alignment
5. Gapped alignment

Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time

Next Generation Sequencing (NGS) Technology

Cost per Genome

NGS Characterized by Short Reads

Genome Millions -billions nucleotides

Next-generation
DNA sequencing

Allow for inexact matches due to:

- Sequencing errors
- Polymorphisms/mutations in reference genome

NGS Characterized by Short Reads

Genome Millions -billions nucleotides

Allow for inexact matches due to:

- Sequencing errors
- Polymorphisms/mutations in reference genome

Next-generation
DNA sequencing

10-100's million short reads Short read: 100 nucleotides

Question: How to account for discrepancy between lengths of reference and short read?

Fitting Alignment

For short read alignment, we want to align complete short read $\mathbf{v} \in$ Σ^{m} to substring of reference genome $\mathbf{w} \in \Sigma^{n}$. Note that $m \ll n$.

$$
\mathbf{v} \in \Sigma^{m}
$$

$\mathbf{w} \in \Sigma^{n}$

Fitting Alignment problem: Given strings $\mathbf{v} \in \Sigma^{m}$ and $\mathbf{w} \in \Sigma^{n}$ and scoring function δ, find a alignment of \mathbf{v} and a substring of \mathbf{w} with maximum global alignment score s^{*} among all global alignments of \mathbf{v} and all substrings of \mathbf{w}

Take Home Messages

1. Running time recap

$$
O(a) \subset O(\log n) \subset O\left(n^{b}\right) \subset O\left(c^{n}\right)
$$

2. Edit distance recap

Edit distance is a distance function (metric)
3. Global alignment

Global alignment is longest path in DAG

Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time

