
CS 466
Introduction to Bioinformatics

Lecture 3

Mohammed El-Kebir
September 5, 2018



Course Announcements
Instructor:
• Mohammed El-Kebir (melkebir)
• Office hours: Mondays, 3:15-4:15pm

TA:
• Anusri Pampari (pampari2)
• Office hours: Thursdays, 11:00-11:59am in SC 4105

Piazza: (please sign up)
• https://piazza.com/class#fall2018/cs466

2

https://piazza.com/class


Outline
1. Running time recap
2. Edit distance recap
3. Global alignment
4. Fitting alignment
5. Gapped alignment

Reading:
• Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
• Lecture notes on running time

3



Running Time Analysis
• The running time of an algorithm ! for problem Π is the maximum number 

of steps that ! will take on any instance of size # = |&|
• Asymptotic running time ignores constant factors using Big O notation

4

f(n)

g(n) ' # = ((* # ) provided there 
exists , > 0 and #/ ≥ 0 such that 
' # ≤ , *(#) for all # ≥ #/

Note that ((* # ) is a set of 
functions. Thus, ' # = ((* # )
actually means ' # ∈ ((* # )



Running Time Analysis – Example

5

! " = 10000 + 500"(

) " = "*/2

!(") is /() " ) provided there exists 0 > 0 and "2 ≥ 0 such that 
! " ≤ 0 )(") for all " ≥ "2

Pick 0 = 1000 and "2 = 3. Then, !(") ≤ 0)(") for all " ≥ "2.

! "
1000 ) "



Running Time Analysis – Guidelines

6

• !(#$) ⊂ !(#') for any positive constants ( < *

• For any constants (, * > 0 and . > 1, 

!(() ⊂ !(log #) ⊂ !(#') ⊂ !(.3)

• We can multiply to learn about other functions. For any constants (, * > 0 and . > 1,

! (# = !(#) ⊂ !(# log #) ⊂ ! # #' = !(#'56) ⊂ !(#.3)

• Base of the logarithm is a constant and can be ignored. For any constants (, * > 1, 

! log$ # = !(log' #/ log' () = !(1/(log' () log' #) = !(log' #)



Running Time Analysis – Guidelines

7

Big Oh Name
!(1) Constant

!(log () Logarithmic
!(() Linear
!(()) Quadratic

! (* = !(poly ( ) Polynomial

!(2/012(3)) Exponential

• !((4) ⊂ !((6) for any positive constants 7 < 9

• For any constants 7, 9 > 0 and = > 1, 

!(7) ⊂ !(log () ⊂ !((6) ⊂ !(=3)

• We can multiply to learn about other functions. For any constants 7, 9 > 0 and = > 0,

! 7( = !(() ⊂ !(( log () ⊂ ! ( (6 = !((6>?) ⊂ !((=3)

• Base of the logarithm is a constant and can be ignored. For any constants 7, 9 > 0, 

! log4 ( = !(log6 (/ log6 7) = !(1/(log6 7) log6 () = !(log6 ()



Running Time Analysis – More Examples
• Recall that !! = ∏%&'

( )

8

Question:  What is * !! ?



Running Time Analysis – More Examples

9

Stirling’s approximation: !! ≈ 2%! &
'
&
= 2% &

')* & !& = + !& = +(2& -./ &)
(*) : ! / exp ! < 1 for all ! > 0

(*)

Question:  What is + log(!!) ?

• Recall that !! = ∏<=>
& ? Question:  What is + !! ?



Running Time Analysis – More Examples
• Recall that !! = ∏%&'

( )

• For constant * > 0 it holds that (
- = O(!-)

10

Stirling’s approximation: !! ≈ 23! (
4
(
= 23 (

456 ( !( = 7 !( = 7(2( 89: ()
(*) : ! / exp ! < 1 for all ! > 0

(*)

Question:  What is 7 log(!!) ?

Question:  What is 7 !! ?



Running Time Analysis – More Examples
• Recall that !! = ∏%&'

( )

• For constant * > 0 it holds that (
- = O(!-)

• Number of source-to-sink paths in the Manhattan 
Tourist Problem on a square ! × ! grid is 2(

(

11

Stirling’s approximation: !! ≈ 25! (
6
(
= 25 (

678 ( !( = 9 !( = 9(2( :;< ()
(*) : ! / exp ! < 1 for all ! > 0

(*)

Question:  What is 9 log(!!) ?

sink*
*

*
*

*

**
* *

*
*

source

*
Question:  What is 9 2(

( ?

Question:  What is 9 !! ?



Running Time Analysis – More Examples
• Recall that !! = ∏%&'

( )

• For constant * > 0 it holds that (
- = O(!-)

• Number of source-to-sink paths in the Manhattan 
Tourist Problem on a square ! × ! grid is 2(

(

12

Stirling’s approximation: !! ≈ 25! (
6
(
= 25 (

678 ( !( = 9 !( = 9(2( :;< ()
(*) : ! / exp ! < 1 for all ! > 0

(*)

Question:  What is 9 log(!!) ?

sink*
*

*
*

*

**
* *

*
*

source

*
Question:  What is 9 2(

( ?

Question:  What is 9 !! ?

When do we achieve this?



Outline
1. Running time recap
2. Edit distance recap
3. Global alignment
4. Fitting alignment
5. Gapped alignment

Reading:
• Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
• Lecture notes on running time

13



Alignment

14

An alignment between two strings v (of m characters) and w (of n characters) 
is a 2 × # matrix, where # = {max ), + , … ,) + +} such that the first row 
contains the characters of v in order, the second row contains the characters 
of w in order, and spaces may be interspersed throughout each.

v: KITTEN (m = 6)

w: SITTING (n = 7)

Input Output

K - I T T E N -
S I - T T I N G

v: 
w: 

Note:  There is no -/-

Mismatch

Insertion

Deletion

Match

Match

Mismatch

Match

Insertion



Edit Distance

15

v: ATGTTAT
w: AGCGTAC

Edit Distance problem: Given strings  ! ∈ Σ$ and % ∈ Σ&, compute the 
minimum number '(!,%) of elementary operations to transform ! into %.

matchmismatch

A T - G T T T
A G C G T - C

!+: 
%,: 

Optimal substructure:
Edit distance obtained from edit distance of prefix of string.

-

.. − 1

- − 1
prefix of ! of length -

prefix of % of length .

insertiondeletionElementary operations:



Computing Edit Distance using Dynamic Programming

16

d[i, j] = min

8
>>>>>><

>>>>>>:

0, if i = 0 and j = 0,

d[i� 1, j] + 1, if i > 0,

d[i, j � 1] + 1, if j > 0,

d[i� 1, j � 1] + 1, if i > 0, j > 0 and vi 6= wj ,

d[i� 1, j � 1], if i > 0, j > 0 and vi = wj .

… -
… !"

… #$
… !"

… #$
… !"

… #$
… -

match

mismatch

insertion

deletion

%, '

% − 1, '% − 1, ' − 1

%, ' − 1
1

1
0 or 1



Weighted Edit Distance – Practice Problem
• Compute weighted edit distance between ! = AGT and & = ATCT.

17



Edit Distance – Additional Insights
• An alignment corresponds to a series of elementary operations

18Examples from http://profs.scienze.univr.it/~liptak/ACB/files/StringDistance_6up.pdf



Edit Distance – Additional Insights
• An alignment corresponds to a series of elementary operations

• But not every series of elementary operations corresponds to an alignment! Why?

19Examples from http://profs.scienze.univr.it/~liptak/ACB/files/StringDistance_6up.pdf



Distance Function / Metric

20

A distance function (metric) on a set ! is a function " ∶ ! × ! → ℝ
s.t. for all ', ), * ∈ !:
i. " ', ) ≥ 0 [non-negativity]
ii. " ', ) = 0 if and only if ' = ) [identity of indiscernibles]
iii. " ', ) = "(), ') [symmetry]
iv. " ', ) ≤ " ', * + "(*, )) [triangle inequality]

Question:  Is edit distance a distance function?



Edit Distance is a Distance Function

21

Edit distance !(#,%) is the minimum number of elementary operations to 
transform # ∈ Σ∗ into % ∈ Σ∗.

Claim: edit distance is a distance function.

Proof: Let *, #,% ∈ Σ∗. 
i. ! #,% ≥ 0 [non-negativity]

Edit distance is defined by an alignment. This in turn uniquely determines 
a series of elementary operations, each with cost either 0 (match) or 1 
(otherwise). Thus, ! #,% ≥ 0.



Edit Distance is a Distance Function

22

Edit distance !(#,%) is the minimum number of elementary operations to 
transform # ∈ Σ∗ into % ∈ Σ∗.

Proof: Let *, #,% ∈ Σ∗. 
ii. ! #,% = 0 if and only if # = % [identity of indiscernibles]

(=>) By the premise, ! #,% = 0. By definition, the optimal alignment can only consist 
of operations with cost 0. That is, the alignment consist of only matches. Thus, # = %.
(<=) By the premise, # = %. Thus, there exists an alignment where every pair of 
columns is a match. This means that |#| = |%| and each letter 01 equals 21 (where 3 ∈
[|#|]). Moreover, only the match operations has cost 0, the other operations have cost 
1. Hence, this is the optimal alignment with cost ! #,% = 0.

Claim: edit distance is a distance function.



Edit Distance is a Distance Function

23

Edit distance !(#,%) is the minimum number of elementary operations to 
transform # ∈ Σ∗ into % ∈ Σ∗.

Proof: Let *, #,% ∈ Σ∗. 
iii. ! #,% = !(%, #) [symmetry]

Let . = [01,2] be the optimal alignment corresponding to ! #,% , i.e. . is an 2 × 6
matrix where 6 ∈ {max( # , % ),… , # + % }. Define the function > . = ? such 
that ? is obtained by interchanging the two rows of .. Since the cost of any insertion, 
deletion and mismatch is 1, we have that alignment ? has cost ! #,% . The existence 
of an alignment from % to # with cost less than ! #,% , yields a contradiction as it 
implies that . is not an optimal alignment from # to %. Hence, ! %, # = ! #,% .

Claim: edit distance is a distance function.



Edit Distance is a Distance Function

24

Edit distance !(#,%) is the minimum number of elementary operations to 
transform # ∈ Σ∗ into % ∈ Σ∗.

Proof: Let *, #,% ∈ Σ∗. 
iv. ! #,% ≤ ! #, * + !(*,%) [triangle inequality]

Assume for a contradiction that ! #,% > ! #, * + !(*,%). Let 1 be the sequence 
of elementary operations for transforming # into *. Let 1′ be the sequence of 
elementary operations for transforming * into %. Note that ! #, * = |1| and 
! *,% = |1′|. Concatenate 1 and 1′ and remove redundant operations, yielding 
sequence 1′′. By definition, 155 ≤ 1 + 15 . We can obtain an alignment of # and 
% from 1′′ with cost 155 ≤ ! #, * + !(*,%). This yields a contradiction with 
! #,% > ! #, * + !(*,%) being the cost of the optimal alignment of # and %.

Claim: edit distance is a distance function.



Dynamic Programming as a Graph Problem

25

End
*

*

*

*
*

**

* *

*

*

Begin

*
Manhattan Tourist Problem:
Every path in directed graph is a possible 
tourist path. Find maximum weight path. 
Running time: ! "# = !( & )

Change Problem: Make M cents using 
minimum number of coins ( = 1, 3, 5 .
Every path in directed graph is a possible 
change. Find shortest path. 
Running time: ! -# = !( & )



Edit Distance as a Graph Problem

26

Edit Distance problem: Given edit 
graph ! = ($, &), with edge 
weights c ∶ & → 0,1 . Find 

shortest path from (0, 0) to (., /).

Edit graph is a weighed, directed grid 
graph ! = ($, &) with source vertex 
(0, 0) and target vertex (., /). Each 

edge (0, 1) has weight [0, 1] corresponding 
to edit cost: deletion (1), insertion (1), 

mismatch (1) and match (0).

Alignment is a path from (0, 0) to (., /)



Outline
1. Running time recap
2. Edit distance recap
3. Global alignment
4. Fitting alignment
5. Gapped alignment

Reading:
• Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
• Lecture notes on running time

27



Biological Sequence Alignment

• Weighted edit distance: find 
alignment with minimum 
distance
• Shortest path in weighted 

edit graph
• Sequence alignment: find 

alignment with maximum 
similarity
• Longest path in weighted 

edit graph
• Score function:
! ∶ Σ ∪ − & → ℝ

28
!(*+, −) !(−,./) !(*+, ./)Question:  What is an example of !?



Scoring Matrices

29

Transitions: interchanges among purines 
(two rings) or pyrimidines (one ring)
• A <--> G
• C <--> T

Transversions: interchanges between purines 
(two rings) and pyrimidines (one ring)
• A <--> C, A <--> T
• G <--> C, G <--> T

Transitions more likely than transversions!

A C

G T



Scoring Matrices

30

Transitions: interchanges among purines 
(two rings) or pyrimidines (one ring)
• A <--> G
• C <--> T

Transversions: interchanges between purines 
(two rings) and pyrimidines (one ring)
• A <--> C, A <--> T
• G <--> C, G <--> T

Transitions more likely than transversions!

! A T C G -
A 1 -2 -2 -1 -1
T -2 1 -1 -2 -1
C -2 -1 1 -2 -1
G -1 -2 -2 1 -1
- -1 -1 -1 -1 −∞



Global Alignment – Needleman-Wunsch Algorithm

• An alignment is a source-to-sink path in the edit graph
• An alignment ! = [$%,'] is a 2 × + matrix s.t. (i) + = {max 0, 1 , … ,0 + 1}, 

(ii) $%,' ∈ Σ ∪ − and (iii) there is no 9 ∈ [+] where $:,' = $;,' = −

31

Global Alignment problem: Given strings  < ∈ Σ= and > ∈ Σ? and scoring 
function @, find alignment with maximum score.

deletion
insertion
match/
mismatch



Demonstration
• http://alfehrest.org/sub/nwa/index.html

• ! = ATGTTAT and & = ATCGTAC.

32

( A T C G -
A 1 -2 -2 -1 -1
T -2 1 -1 -2 -1
C -2 -1 1 -2 -1
G -1 -2 -2 1 -1
- -1 -1 -1 -1 −∞

http://alfehrest.org/sub/nwa/index.html


Outline
1. Running time recap
2. Edit distance recap
3. Global alignment
4. Fitting alignment
5. Gapped alignment

Reading:
• Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
• Lecture notes on running time

33



Next Generation Sequencing (NGS) Technology

34November, 2017

Lo
g 

Sc
al

e

1,000

10,000

100,000,000

10,000,000

1,000,000

100,000

NGS



Allow for inexact matches due to:
• Sequencing errors
• Polymorphisms/mutations in 

reference genome

35

NGS Characterized by Short Reads

Genome
Millions -billions 
nucleotides

Next-generation
DNA sequencing

10-100’s million short reads
Short read: 100 nucleotides

… GGTAGTTAG …

… TATAATTAG …

… AGCCATTAG …

… CGTACCTAG …

… CATTCAGTAG …

… GGTAAACTAG …



Allow for inexact matches due to:
• Sequencing errors
• Polymorphisms/mutations in 

reference genome

36

NGS Characterized by Short Reads

Genome
Millions -billions 
nucleotides

Next-generation
DNA sequencing

10-100’s million short reads
Short read: 100 nucleotides

… GGTAGTTAG …

… TATAATTAG …

… AGCCATTAG …

… CGTACCTAG …

… CATTCAGTAG …

… GGTAAACTAG …

Question:  How to account for discrepancy 
between lengths of reference and short read?

Human reference genome is 
3,300,000,000 nucleotides, while a 
short read is 100 nucleotides. 
Global sequence alignment will not 
work!



Fitting Alignment

37

For short read alignment, we want to align complete short read ! ∈
Σ$ to substring of reference genome% ∈ Σ&. Note that ' ≪ ).

Fitting Alignment problem: Given strings ! ∈ Σ$ and % ∈ Σ& and 
scoring function *, find a alignment of ! and a substring of % with 

maximum global alignment score +∗ among all global alignments of 
! and all substrings of %

! ∈ Σ$
% ∈ Σ&



Take Home Messages
1. Running time recap

2. Edit distance recap

3. Global alignment

Reading:
• Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
• Lecture notes on running time

38

Edit distance is a distance function (metric)

!(#) ⊂ !(log )) ⊂ !()*) ⊂ !(+,)

Global alignment is longest path in DAG


