CS 466 Introduction to Bioinformatics Lecture 3

Mohammed El-Kebir

September 5, 2018

Course Announcements

Instructor:

- Mohammed El-Kebir (melkebir)
- Office hours: Mondays, 3:15-4:15pm

TA:

- Anusri Pampari (pampari2)
- Office hours: Thursdays, 11:00-11:59am in SC 4105

Piazza: (please sign up)

• <u>https://piazza.com/class#fall2018/cs466</u>

Outline

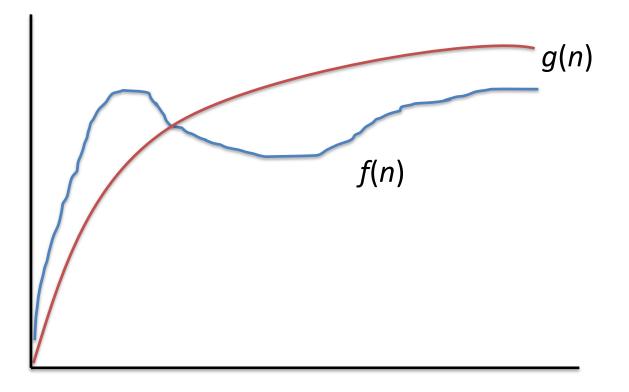
- 1. Running time recap
- 2. Edit distance recap
- 3. Global alignment
- 4. Fitting alignment
- 5. Gapped alignment

Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time

Running Time Analysis

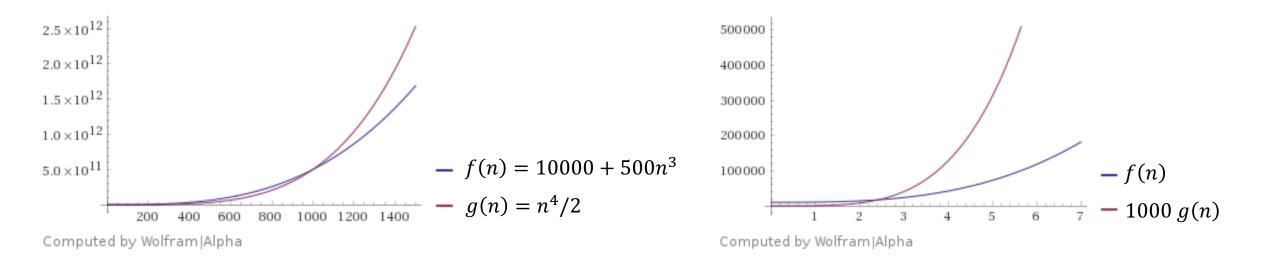
- The running time of an algorithm A for problem Π is the maximum number of steps that A will take on any instance of size n = |X|
- Asymptotic running time ignores constant factors using Big O notation



f(n) = O(g(n)) provided thereexists c > 0 and $n_0 \ge 0$ such that $f(n) \le c g(n)$ for all $n \ge n_0$

Note that O(g(n)) is a set of functions. Thus, f(n) = O(g(n))actually means $f(n) \in O(g(n))$

f(n) is O(g(n)) provided there exists c > 0 and $n_0 \ge 0$ such that $f(n) \le c g(n)$ for all $n \ge n_0$



Pick
$$c = 1000$$
 and $n_0 = 3$. Then, $f(n) \le cg(n)$ for all $n \ge n_0$.

Running Time Analysis – Guidelines

- $O(n^a) \subset O(n^b)$ for any positive constants a < b
- For any constants a, b > 0 and c > 1,

 $O(a) \subset O(\log n) \subset O(n^b) \subset O(c^n)$

• We can multiply to learn about other functions. For any constants a, b > 0 and c > 1,

$$O(an) = O(n) \subset O(n \log n) \subset O(n n^b) = O(n^{b+1}) \subset O(nc^n)$$

• Base of the logarithm is a constant and can be ignored. For any constants a, b > 1, $O(\log_a n) = O(\log_b n / \log_b a) = O(1/(\log_b a) \log_b n) = O(\log_b n)$

Running Time Analysis – Guidelines

- $O(n^a) \subset O(n^b)$ for any positive constants a < b
- For any constants a, b > 0 and c > 1, $O(a) \subset O(\log n) \subset O(n^b) \subset O(c^n)$

Big Oh	Name	
0(1)	Constant	
$O(\log n)$	Logarithmic	
O(n)	Linear	
$O(n^2)$	Quadratic	
$O(n^c) = O(\text{poly}(n))$	Polynomial	
$O(2^{\operatorname{poly}(n)})$	Exponential	

• We can multiply to learn about other functions. For any constants a, b > 0 and c > 0,

$$O(an) = O(n) \subset O(n \log n) \subset O(n n^b) = O(n^{b+1}) \subset O(nc^n)$$

• Base of the logarithm is a constant and can be ignored. For any constants a, b > 0,

$$O(\log_a n) = O(\log_b n / \log_b a) = O(1 / (\log_b a) \log_b n) = O(\log_b n)$$

• Recall that $n! = \prod_{i=1}^{n} i$

Question: What is O(n!)?

• Recall that $n! = \prod_{i=1}^{n} i$

Question: What is O(n!)?

Stirling's approximation:
$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi} \frac{\sqrt{n}}{\exp(n)} n^n \stackrel{(*)}{=} O(n^n) = O(2^{n \log n})$$

(*): $\sqrt{n} / \exp(n) < 1$ for all $n > 0$

Question: What is $O(\log(n!))$?

• Recall that $n! = \prod_{i=1}^{n} i$

Question: What is O(n!)?

Stirling's approximation:
$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi} \frac{\sqrt{n}}{\exp(n)} n^n \stackrel{(*)}{=} O(n^n) = O(2^{n \log n})$$

(*): $\sqrt{n} / \exp(n) < 1$ for all $n > 0$

Question: What is $O(\log(n!))$?

• For constant k > 0 it holds that $\binom{n}{k} = O(n^k)$

• Recall that $n! = \prod_{i=1}^{n} i$

Question: What is O(n!)?

source

Stirling's approximation:
$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi} \frac{\sqrt{n}}{\exp(n)} n^n \stackrel{(*)}{=} O(n^n) = O(2^{n \log n})$$

(*): $\sqrt{n} / \exp(n) < 1$ for all $n > 0$

Question: What is $O(\log(n!))$?

- For constant k > 0 it holds that $\binom{n}{k} = O(n^k)$
- Number of source-to-sink paths in the Manhattan Tourist Problem on a square $n \times n$ grid is $\binom{2n}{n}$

Question: What is
$$O\left(\binom{2n}{n}\right)$$
?

• Recall that $n! = \prod_{i=1}^{n} i$

Question: What is O(n!)?

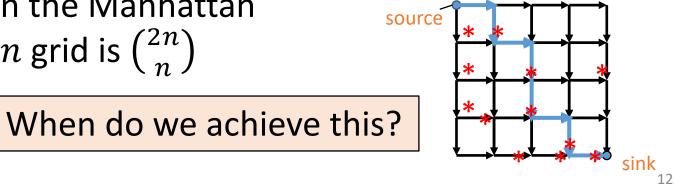
Stirling's approximation:
$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n = \sqrt{2\pi} \frac{\sqrt{n}}{\exp(n)} n^n \stackrel{(*)}{=} O(n^n) = O(2^{n \log n})$$

(*): $\sqrt{n} / \exp(n) < 1$ for all $n > 0$

Question: What is $O(\log(n!))$?

- For constant k > 0 it holds that $\binom{n}{k} = O(n^k)$
- Number of source-to-sink paths in the Manhattan Tourist Problem on a square $n \times n$ grid is $\binom{2n}{n}$

Question: What is
$$O\left(\binom{2n}{n}\right)$$
?



Outline

1. Running time recap

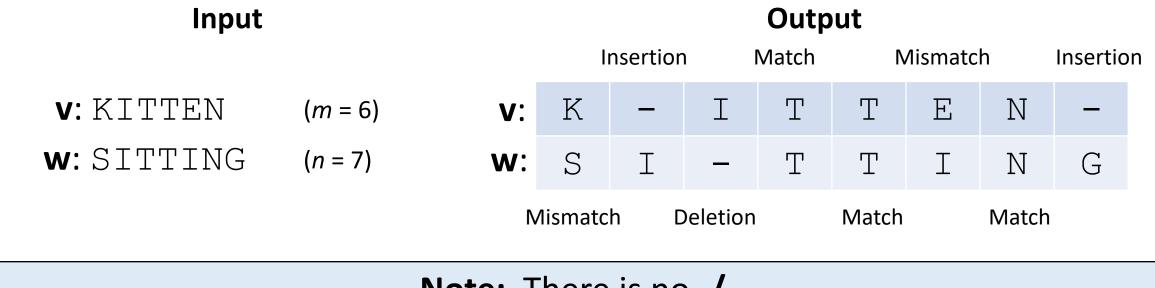
- 2. Edit distance recap
- 3. Global alignment
- 4. Fitting alignment
- 5. Gapped alignment

Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time

Alignment

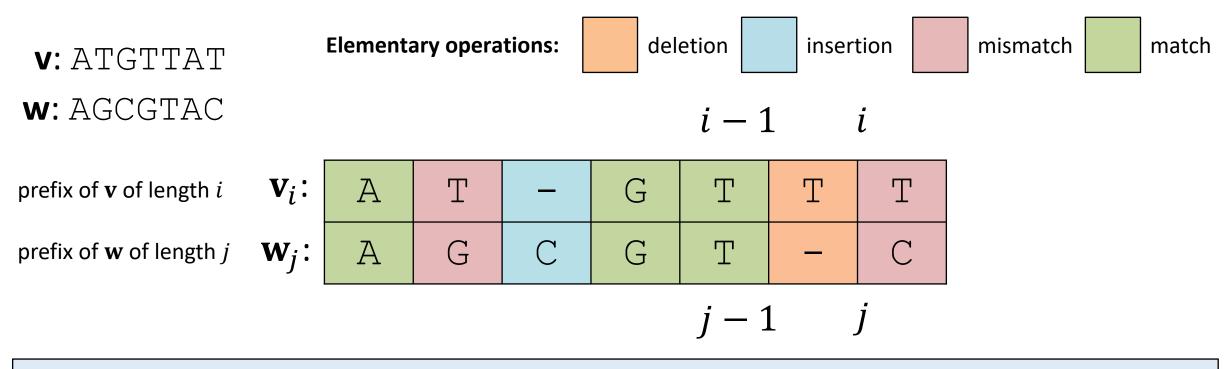
An **alignment** between two strings **v** (of *m* characters) and **w** (of *n* characters) is a $2 \times k$ matrix, where $k = \{\max(m, n), \dots, m + n\}$ such that the first row contains the characters of **v** in order, the second row contains the characters of **w** in order, and spaces may be interspersed throughout each.



Note: There is no -/-

Edit Distance

Edit Distance problem: Given strings $\mathbf{v} \in \Sigma^m$ and $\mathbf{w} \in \Sigma^n$, compute the minimum number $d(\mathbf{v}, \mathbf{w})$ of elementary operations to transform \mathbf{v} into \mathbf{w} .

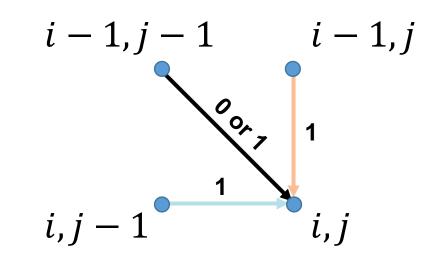


Optimal substructure:

Edit distance obtained from edit distance of prefix of string.

Computing Edit Distance using Dynamic Programming

$$d[i,j] = \min \begin{cases} 0, & \text{if } i = 0 \text{ and } j = 0, \\ d[i-1,j]+1, & \text{if } i > 0, \\ d[i,j-1]+1, & \text{if } j > 0, \\ d[i-1,j-1]+1, & \text{if } i > 0, j > 0 \text{ and } v_i \neq w_j, \\ d[i-1,j-1]+1, & \text{if } i > 0, j > 0 \text{ and } v_i \neq w_j, \\ d[i-1,j-1], & \text{if } i > 0, j > 0 \text{ and } v_i = w_j. \\ \hline u_i & \text{with mismatch mi$$



Weighted Edit Distance – Practice Problem

• Compute weighted edit distance between $\mathbf{v} = AGT$ and $\mathbf{w} = ATCT$.

$$d[i, j] = \min \begin{cases} 0, & \text{if } i = 0 \text{ and } j = 0, \\ d[i - 1, j] + 1, & \text{if } i > 0, \\ d[i, j - 1] + 1, & \text{if } j > 0, \\ d[i - 1, j - 1] + 2, & \text{if } i > 0, j > 0 \text{ and } v_i \neq w_j, \\ d[i - 1, j - 1], & \text{if } i > 0, j > 0 \text{ and } v_i = w_j. \end{cases}$$

Edit Distance – Additional Insights

• An alignment corresponds to a series of elementary operations

Example T-ACAT-TGAT-AT

 $\mathsf{TACAT} \stackrel{\mathsf{ins}}{\to} \mathsf{TGACAT} \stackrel{\mathsf{subst}}{\to} \mathsf{TGATAT} \stackrel{\mathsf{del}}{\to} \mathsf{TGATT} \stackrel{\mathsf{subst}}{\to} \mathsf{TGATA} \stackrel{\mathsf{ins}}{\to} \mathsf{TGATAT}$

Edit Distance – Additional Insights

• An alignment corresponds to a series of elementary operations

Example T-ACAT-TGAT-AT TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGATAT $\xrightarrow{\text{del}}$ TGATT $\xrightarrow{\text{subst}}$ TGATA $\xrightarrow{\text{ins}}$ TGATAT

• But not every series of elementary operations corresponds to an alignment! Why?

• TACAT
$$\xrightarrow{\text{subst}}$$
 GACAT $\xrightarrow{\text{del}}$ GAAT $\xrightarrow{\text{ins}}$ TGAAT $\xrightarrow{\text{ins}}$ TGATAT $\xrightarrow{\text{-TAC-AT}}$ TGA-TAT

• TACAT $\xrightarrow{\text{ins}}$ TGACAT $\xrightarrow{\text{subst}}$ TGAGAT $\xrightarrow{\text{subst}}$ TGATAT ???

Examples from http://profs.scienze.univr.it/~liptak/ACB/files/StringDistance_6up.pdf

.

Distance Function / Metric

A distance function (metric) on a set X is a function $d : X \times X \to \mathbb{R}$ s.t. for all $x, y, z \in X$: *i.* $d(x, y) \ge 0$ [non-negativity] *ii.* d(x, y) = 0 if and only if x = y [identity of indiscernibles] *iii.* d(x, y) = d(y, x) [symmetry] *iv.* $d(x, y) \le d(x, z) + d(z, y)$ [triangle inequality]

Question: Is edit distance a distance function?

Edit distance $d(\mathbf{v}, \mathbf{w})$ is the minimum number of elementary operations to transform $\mathbf{v} \in \Sigma^*$ into $\mathbf{w} \in \Sigma^*$.

Claim: edit distance is a distance function.

Proof: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Sigma^*$.[non-negativity]*i.* $d(\mathbf{v}, \mathbf{w}) \ge 0$ [non-negativity]Edit distance is defined by an alignment. This in turn uniquely determinesa series of elementary operations, each with cost either 0 (match) or 1(otherwise). Thus, $d(\mathbf{v}, \mathbf{w}) \ge 0$.

Edit distance $d(\mathbf{v}, \mathbf{w})$ is the minimum number of elementary operations to transform $\mathbf{v} \in \Sigma^*$ into $\mathbf{w} \in \Sigma^*$.

Claim: edit distance is a distance function.

Proof: Let **u**, **v**, **w** ∈ Σ*. *ii.* $d(\mathbf{v}, \mathbf{w}) = 0$ if and only if $\mathbf{v} = \mathbf{w}$ [identity of indiscernibles]
(=>) By the premise, $d(\mathbf{v}, \mathbf{w}) = 0$. By definition, the optimal alignment can only consist of operations with cost 0. That is, the alignment consist of only matches. Thus, $\mathbf{v} = \mathbf{w}$.
(<=) By the premise, $\mathbf{v} = \mathbf{w}$. Thus, there exists an alignment where every pair of columns is a match. This means that $|\mathbf{v}| = |\mathbf{w}|$ and each letter v_i equals w_i (where $i \in [|\mathbf{v}|]$). Moreover, only the match operations has cost 0, the other operations have cost 1. Hence, this is the optimal alignment with cost $d(\mathbf{v}, \mathbf{w}) = 0$.

Edit distance $d(\mathbf{v}, \mathbf{w})$ is the minimum number of elementary operations to transform $\mathbf{v} \in \Sigma^*$ into $\mathbf{w} \in \Sigma^*$.

Claim: edit distance is a distance function.

Proof: Let u, v, w ∈ Σ*.[symmetry]*iii.* d(v, w) = d(w, v)[symmetry]Let A = [a_{i,j}] be the optimal alignment corresponding to d(v, w), i.e. A is an 2 × kmatrix where k ∈ {max(|v|, |w|), ..., |v| + |w|}. Define the function f(A) = B suchthat B is obtained by interchanging the two rows of A. Since the cost of any insertion,deletion and mismatch is 1, we have that alignment B has cost d(v, w). The existenceof an alignment from w to v with cost less than d(v, w), yields a contradiction as itimplies that A is not an optimal alignment from v to w. Hence, d(w, v) = d(v, w).

Edit distance $d(\mathbf{v}, \mathbf{w})$ is the minimum number of elementary operations to transform $\mathbf{v} \in \Sigma^*$ into $\mathbf{w} \in \Sigma^*$.

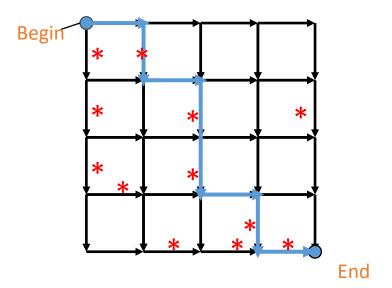
Claim: edit distance is a distance function.

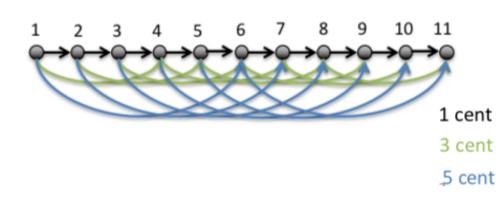
Proof: Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \Sigma^*$. *iv.* $d(\mathbf{v}, \mathbf{w}) \leq d(\mathbf{v}, \mathbf{u}) + d(\mathbf{u}, \mathbf{w})$ [triangle inequality] Assume for a contradiction that $d(\mathbf{v}, \mathbf{w}) > d(\mathbf{v}, \mathbf{u}) + d(\mathbf{u}, \mathbf{w})$. Let *S* be the sequence of elementary operations for transforming \mathbf{v} into \mathbf{u} . Let *S'* be the sequence of elementary operations for transforming \mathbf{u} into \mathbf{w} . Note that $d(\mathbf{v}, \mathbf{u}) = |S|$ and $d(\mathbf{u}, \mathbf{w}) = |S'|$. Concatenate *S* and *S'* and remove redundant operations, yielding sequence *S''*. By definition, $|S''| \leq |S| + |S'|$. We can obtain an alignment of \mathbf{v} and \mathbf{w} from *S''* with cost $|S''| \leq d(\mathbf{v}, \mathbf{u}) + d(\mathbf{u}, \mathbf{w})$. This yields a contradiction with $d(\mathbf{v}, \mathbf{w}) > d(\mathbf{v}, \mathbf{u}) + d(\mathbf{u}, \mathbf{w})$ being the cost of the optimal alignment of \mathbf{v} and \mathbf{w} .

Dynamic Programming as a Graph Problem

Manhattan Tourist Problem:

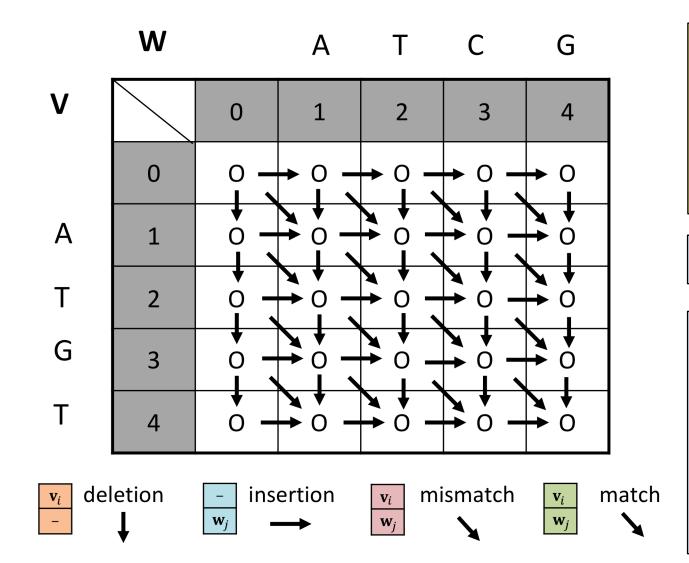
Every path in directed graph is a possible tourist path. Find maximum weight path. Running time: O(mn) = O(|E|)





Change Problem: Make *M* cents using minimum number of coins $\mathbf{c} = (1, 3, 5)$. Every path in directed graph is a possible change. Find shortest path. Running time: O(Mn) = O(|E|)

Edit Distance as a Graph Problem



Edit Distance problem: Given edit graph G = (V, E), with edge weights $c : E \rightarrow \{0,1\}$. Find shortest path from (0,0) to (m,n).

Alignment is a path from (0, 0) to (m, n)

Edit graph is a weighed, directed grid graph G = (V, E) with source vertex (0, 0) and target vertex (m, n). Each edge (i, j) has weight [i, j] corresponding to edit cost: deletion (1), insertion (1), mismatch (1) and match (0).

Outline

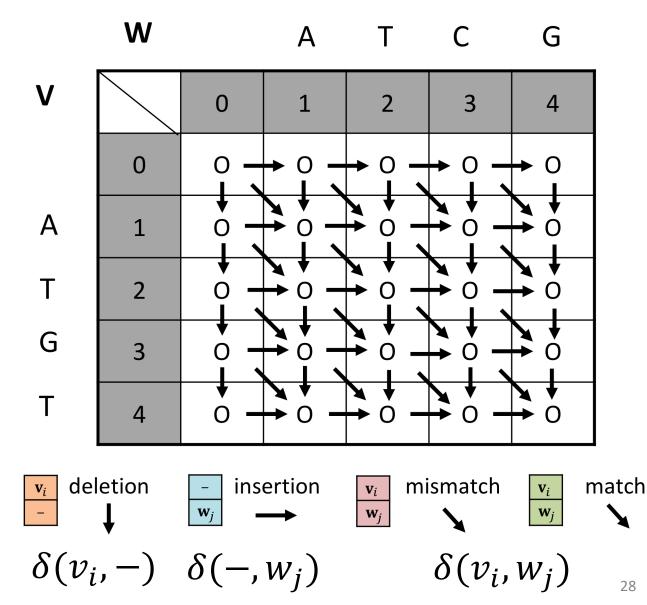
- Running time recap
 Edit distance recap
- 3. Global alignment
- 4. Fitting alignment
- 5. Gapped alignment

Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time

Biological Sequence Alignment

- Weighted edit distance: find alignment with minimum distance
 - Shortest path in weighted edit graph
- Sequence alignment: find alignment with maximum similarity
 - Longest path in weighted edit graph
 - Score function: $\delta : (\Sigma \cup \{-\})^2 \to \mathbb{R}$



Question: What is an example of δ ?

Scoring Matrices

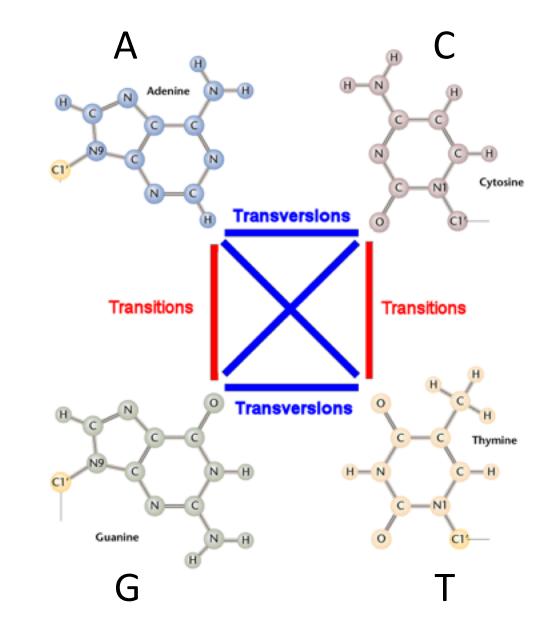
Transitions: interchanges among purines (two rings) or pyrimidines (one ring)

- A <--> G
- C <--> T

Transversions: interchanges between purines (two rings) and pyrimidines (one ring)

- A <--> C, A <--> T
- G <--> C, G <--> T

Transitions more likely than transversions!



Scoring Matrices

Transitions: interchanges among purines (two rings) or pyrimidines (one ring)

- A <--> G
- C <--> T

Transversions: interchanges between purines (two rings) and pyrimidines (one ring)

- A <--> C, A <--> T
- G <--> C, G <--> T

Transitions more likely than transversions!

δ	Α	Т	С	G	-
Α	1	-2	-2	-1	-1
Т	-2	1	-1	-2	-1
С	-2	-1	1	-2	-1
G	-1	-2	-2	1	-1
-	-1	-1	-1	-1	$-\infty$

Global Alignment – Needleman-Wunsch Algorithm

Global Alignment problem: Given strings $\mathbf{v} \in \Sigma^m$ and $\mathbf{w} \in \Sigma^n$ and scoring function δ , find alignment with maximum score.

- An alignment is a source-to-sink path in the edit graph
- An alignment $\mathbf{A} = [a_{i,j}]$ is a $2 \times k$ matrix s.t. (i) $k = \{\max(m, n), \dots, m + n\}$, (ii) $a_{i,j} \in \Sigma \cup \{-\}$ and (iii) there is no $j \in [k]$ where $a_{1,j} = a_{2,j} = -$

$$s[i,j] = \max \begin{cases} 0, & \text{if } i = 0 \text{ and } j = 0, \\ s[i-1,j] + \delta(v_i,-), & \text{if } i > 0, \\ s[i,j-1] + \delta(-,w_j), & \text{if } j > 0, \\ s[i-1,j-1] + \delta(v_i,w_j), & \text{if } i > 0 \text{ and } j > 0. \\ \text{mismatch} \end{cases}$$

Demonstration

<u>http://alfehrest.org/sub/nwa/index.html</u>

• $\mathbf{v} = \text{ATGTTAT}$ and $\mathbf{w} = \text{ATCGTAC}$.

δ	Α	Т	С	G	-
Α	1	-2	-2	-1	-1
Т	-2	1	-1	-2	-1
С	-2	-1	1	-2	-1
G	-1	-2	-2	1	-1
-	-1	-1	-1	-1	$-\infty$

Outline

- 1. Running time recap
- 2. Edit distance recap
- 3. Global alignment
- 4. Fitting alignment
- 5. Gapped alignment

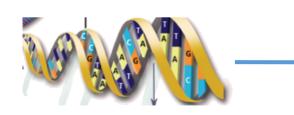
Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time

Next Generation Sequencing (NGS) Technology



NGS Characterized by Short Reads



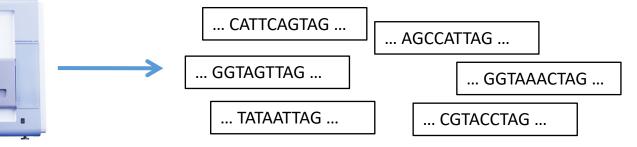
Genome Millions -billions nucleotides

Next-generation DNA sequencing

ÉÉÉ

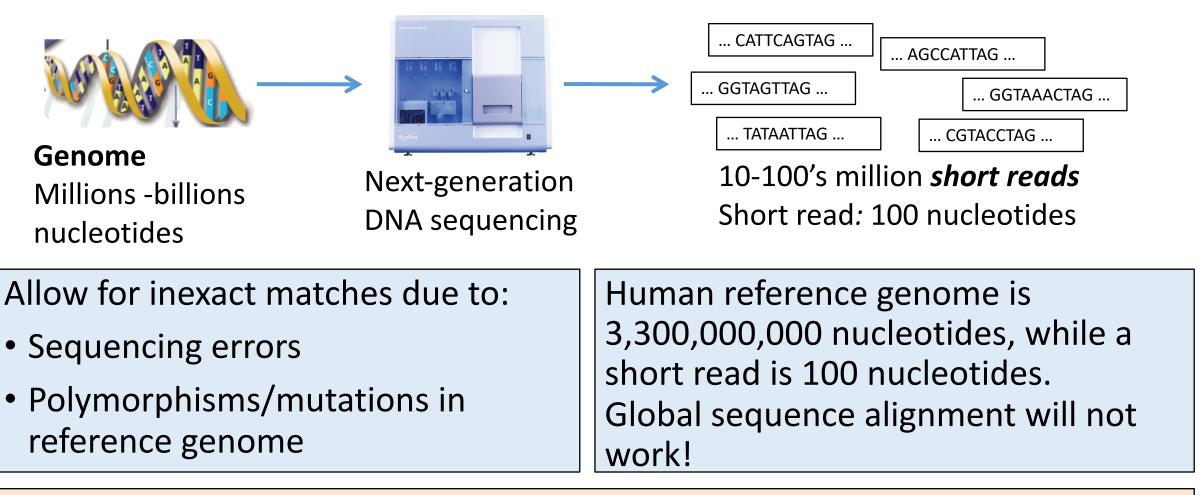
Allow for inexact matches due to:

- Sequencing errors
- Polymorphisms/mutations in reference genome



10-100's million *short reads* Short read: 100 nucleotides

NGS Characterized by Short Reads



Question: How to account for discrepancy between lengths of reference and short read?

Fitting Alignment

For short read alignment, we want to align complete short read $\mathbf{v} \in \Sigma^m$ to substring of reference genome $\mathbf{w} \in \Sigma^n$. Note that $m \ll n$.

 $\mathbf{w} \in \Sigma^n$

Fitting Alignment problem: Given strings $\mathbf{v} \in \Sigma^m$ and $\mathbf{w} \in \Sigma^n$ and scoring function δ , find a alignment of \mathbf{v} and a substring of \mathbf{w} with maximum global alignment score s^* among *all* global alignments of \mathbf{v} and *all* substrings of \mathbf{w}

Take Home Messages

1. Running time recap

$$\mathcal{O}(a) \subset \mathcal{O}(\log n) \subset \mathcal{O}(n^b) \subset \mathcal{O}(c^n)$$

2. Edit distance recap

Edit distance is a distance function (metric)

3. Global alignment

Global alignment is longest path in DAG

Reading:

- Jones and Pevzner. Chapters 6.6, 6.7 and 6.9
- Lecture notes on running time