Assembly in Practice: Part 2: DBG

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ @ | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Assembly alternatives

Alternative 1: Overlap-Layout-Consensus (OLC) assembly

Alternative 2: De Bruijn graph (DBG) assembly

! |
[Overlap4 [Error correction j
[La:/out 4 [De Bruij+n graph j
v ¥

[Consensuﬁ [Refine j
|

l v \/
[Scaffolding j

e & S G o T)
Coeeacan >

il

T B
- (i

N7,
L st o, T o
A] S esa s (W () 2)
o AR\ o g :f\ ” ‘:7\/- S e « o /”'W‘ i
T S PSS >\l () T,
= BoN i I o oz = R e
ol VA‘- (W) N ey (] = =
e i) P e T y e
T W W= v oS R QR o> e R s 7 Sty
Y, 7 (\ Y, (@h“ “)‘)"" (([///}) ‘,/‘,// >
Za i e BRI e) 7 1
il o ol 7S
‘,//f.ﬁ) @\\\\\ @;’j.@%,’ ' R
] o T
/) _ R G A Y B e T e T
\\\ ‘ - e ’éﬁiﬂ?’, Chmnaiy fogomam \ . ‘ o3) , ’;\'I’ﬁﬂ,@
— ‘ Teriig = e
= N
HI
i @@T
D = W i
2 2ir MLt
o o) [i
L s T X U
ST . itz -
= N \ ll)‘t'{\\ 23 "% o g \\\ x>
e, S o \@;@ S\ Wz ol el 1) e (((Tij)))
Cngea> CErons> e o RS) AN)
S e A (i)
O mu 2 G i
S e L &
o> g
T R R T e S
= ' T ' Bt = Ao NN T
NN i (g R e I
S AT S >
TRsa A ga = ML ==
TEmsacllasS 1
S : T
o S O T = i o am, cmm ol s
N e T o ? 7 e .
N D D e, o) U {)
[T I . . ST o S
ST A T sitsMmalil: |g. T
o 25 A o> == ([© D il
- Ziga === = B S | O e o o i

De Bruijn graph

Pickk=8 Genome: a long long long time

Reads: a _long long long, ng long 1, g long time

k-mers: a_long 1 ng_long__ g_long_t
“long lo g _long_1 _long_ti
long_lon long_tim
ong long ong time

g lone
7 “fonelo
:

l For each read:
@ For each k-mer:
\ Add k-mer’s left and right k-1-mers to
ng_long @ graph if not there already. Draw an

edge from left to right k-1-mer.

De Bruijn graph

_ 9)
=6x 10 reads . = 1 week-long run of
n =100 nt)

lllumina HiSeq 2000

Sequencer outputs d reads of length n, total length N =dn.

To build graph: Pick k. Usually k is short relative to read length
(k =30to 50 is common).

For each read:
For each k-mer:

Add k-mer’s left and right k-1-mers to graph if not there
already. Draw an edge from left to right k-1-mer.

http://www.illumina.com/systems/hiseq_2000.ilmn

De Bruijn graph

_ 9)
=6x 10 reads . = 1 week-long run of
n =100 nt)

lllumina HiSeq 2000

Sequencer outputs d reads of length n, total length N =dn.

To build graph: Pick k. Usually k is short relative to read length
(k =30to 50 is common).

k-mers (edges): O(N)

nodes is at most 2 - (# edges); typically much

smaller due to repeated k-1-mers O(N)

http://www.illumina.com/systems/hiseq_2000.ilmn

De Bruijn graph

How much work to build graph?

For each k-mer, add 1 edge and up to 2 nodes

Reasonable to say this is O(1) expected work

Say hash map holds nodes & edges

Say k-1-mers fit in O(1) machine words, and
hashing O(1) words is O(1) work

Querying / adding a key is O(1) expected work

O(1) expected work for 1 k-mer, O(N) overall

De Bruijn graph

Timed De Bruijn graph construction applied to progressively longer
prefixes of lambda phage genome, k= 14

O(N) expectation works
In practice

0.20
I

(in this case at least)

0.15
I

Seconds required to build
0.10
|
o)

0.05
I

0.00
I

I I I I I I
0 10000 20000 30000 40000 50000

Length of genome

De Bruijn graph

In typical assembly projects,
average coverage is ~ 30 - 50

ASRANAAN (

yhpy)
s

De Bruijn graph

Before: one
edge per k-mer

llr

T/

S
A \‘
")

After: one weighted @
edge per distinct k-mer |

De Bruijn graph

of nodes and edges both O(N)

Say (a) reads are error-free, (b) we have one weighted edge
for each distinct k-mer, and (c) length of genome is G

1 node per distinct k-1-mer, 1 edge per distinct k-mer

Can’t have more distinct k-mers than k-mers in the
genome; likewise for k-1-mers

So # of nodes and edges are both O(G)

Combine with the O(N) bound and the # of nhodes and
edges are both O(min(N, G))

De Bruijn graph

At high coverage, O(min(N, G)) bound is advantageous

Genome:

ambda phage (~48,500 bp)

Draw ranc

average coverage (x axis) is reached

Build graph, sum # nodes and # edges

(y axis)

om k-mers until target

de Bruijn graph nodes + edges

40000 60000 80000

20000

k

30

I I
20 30

Average coverage

50

De Bruijn graph

At high coverage, O(min(N, G)) bound is advantageous

Genome:

ambda phage (~48,500 bp)

Draw ranc

om k-mers until target

average coverage (x axis) is reached

Build graph, sum # nodes and # edges

(y axis)

de Bruijn graph nodes + edges

40000 60000 80000

20000

O(G) plateau

I I I I I
10 20 30 40 50

Average coverage

De Bruijn graph

Advantages

Can build in O(N) expected time, N = total length of reads

With error-free data, space is O(min(N, G)); G = genome length

When average coverage is high, G« N

Compares favorably with overlap graph
Overlap graph has node for every read, edge for every overlap

Fast construction (suffix tree) is O(N + a) time, where a is O(d?)

De Bruijn graph

Disadvantages

Reads are immediately split into shorter k-mers, losing the ability to
resolve some repeats resolvable by overlap graph

Only relatively short, exact overlaps are considered, which makes
handling of sequencing errors more complicated

We lose read coherence. Some paths through De Bruijn graph are
inconsistent with respect to input reads.

Assembly alternatives

De Bruijn Overlap

Suffix tree: O(N + a)
Dyn Prog: O(N?)

Time to build

O
Space " O(N + a)

Error-free: O(min(N, G))

n = # reads
d = read length
N = dn = # bases

a = # overlaps; a € O(n?2)
G = source genome length

When average coverage is high, G « Nand the G is the more
relevant bound for De Bruijn graph size

Error correction

When data is error-free, # nodes, edges in De Bruijn graph is
O(min(G, N))

7 What about data with
sequencing errors?

k=30

I I I I I
10 20 30 40 50

De Bruijn graph edges
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Average Lambda phage coverage

Error correction

How many possible DNA strings of length k? 4k
How many possible DNA strings of length 20? 420 =240 = 1 trillion
How many strings of length 20 in human genome? ~3 billion

For large k, set of k-mers in genome is tiny subset of all 4k k-mers

Errors tend to yield new k-mers that don’t appear elsewhere

Given k-mer from genome, we expect most of its neighbors
(e.g. by Hamming distance) are not in the genome

Analogy: correctly / incorrectly spelled words in collection of documents

Error correction

Correcting errors up-front prevents De Bruijn graph from growing
far beyond O(G) plateau

How to correct?
Analogy: how to spell check a language you've never seen before?

Errors tend to turn frequent words (k-mers) to infrequent ones.
Corrections should do the reverse.

Error correction

Left: Take example, mutate
a k-mer character randomly
"~ with probability 1%

Right: 6 errors yield 10 new
nodes, 6 new weighted (oot
edges, all with weight 1

Error correction

As more k-mers overlap errors, # nodes & edges approach N

Same experiment as before,
with 5% error added

250000

Errors "push through" G bound

De Bruijn graph edges
150000

50000
I

0
I

10 20 30 40 50

Average Lambda phage coverage

Error correction

As more k-mers overlap errors, # nodes & edges approach N

Same experiment as before,
with 5% error added

250000

Errors "push through" G bound

150000

(Now with 1% error added)

De Bruijn graph edges

50000
I

0
I

Average Lambda phage coverage

Error correction

k-mer count histogram:

X axis is an integer k-mer count, y axis is # distinct k-mers with that count

Right: such a ATC and TCA occur 4 times
histogram for 3-mers S 4
of CATCATCATCATCAT:

= CQT occurs 5 times

k-mer count

Error correction

Draw 20-mers from genome randomly until each 20-mer has been
drawn 10 times on average

10000
I

How would the picture —o— Error-free

change for data with
1% error rate?

~ 6,100 distinct k-mers
occurred exactly 10

/times in the input

8000
I

6000

4000

distinct k-mers with that count
2000

>

-
O\ A
v oO—0—6C——C

0
I

k-mer count

Error correction

k-mers with errors usually occur fewer times than error-free k-mers

o
o
O — ~ —
= occuronce —— 0.1% error
J o
@) o _|
(&) o
- (0 0]
®
<
c 3
= o
= ©
N
)
o
E 9 -
VR
O
._g o
n S
5 N
=
o
/ | | | | |

32 k-mers 5 10 15 20 25

OCCUr once
k-mer count

Error correction

Idea: errors tend to turn frequent k-mers to infrequent k-mers, so
corrections should do the reverse

Say each 8-mer occurs an average of ~10 times:

Read: GCGTATTACGCGTCTGGCCT (20 nt)

GCGTATTA: 8

CGTATTAC: 8
GTATTACG: 9
TATTACGC: 9
ATTACGCG: 10
TTACGCGT: 16
TACGCGTC: 11
ACGCGTCT: 11
CGCGTCTG: 16
GCGTCTGG: 16
CGTCTGGC: 11
GTCTGGCC: S
TCTGGCCT: 8

times each 8-mer
occurs in the reads.

8-mers: “k-mer count profile”

All 8-mer counts are near
average, suggesting read is
error-free

Error correction

Suppose there’s an error

Read: GCGTACTACGCGTCTGGCCT

GCGTACTA: 1
CGTACTAC: 2
GTACTACG: 1
TACTACGC: 1
ACTACGCG: 2
CTACGCGT: 1
TACGCGTC: S
ACGCGTCT: 8
CGCGTCTG: 16
GCGTCTGG: 16
CGTCTGGC: 11
GTCTGGCC: S

TCTGGCCT: 8

k-mer count profile has
Below average corresponding stretch of
below-average counts

Around average

Error correction

k-mer counts when errors are in different parts of the read:

GCGTACTACGCGTCTGGCCT GCGTATTACACGTCTGGCCT GCGTATTACGCGTCTGGTCT

GCGTACTA: 1 GCGTATTA: 8 GCGTATTA: 8
CGTACTAC: 3 CGTATTAC: 8 CGTATTAC: 8
GTACTACG: 1 GTATTACA: 1 GTATTACG: S
TACTACGC: 1 TATTACAC: 1 TATTACGC: 9
ACTACGCG: 2 ATTACACG: 1 ATTACGCG: 9
CTACGCGT: 1 TTACACGT: 1 TTACGCGT: 12
TACGCGTC: 9 TACACGTC: 1 TACGCGTC: 9
ACGCGTCT: 8 ACACGTCT: 2 ACGCGTCT: 8
CGCGTCTG: 16 CACGTCTG: 1 CGCGTCTG: 16
GCGTCTGG: 16 ACGTCTGG: 1 GCGTCTGG: 16
CGTCTGGC: 11 CGTCTGGC: 11 CGTCTGGT: 1
GTCTGGCC: S GTCTGGCC: S GTCTGGTC: 2
TCTGGCCT: 8 TCTGGCCT: 8 TCTGGTCT: 1

N RN A

Error correction

Count profile indicates where errors are

10

_ These probably
overlap an error

count

2 4 6 8
I

)

I
38

N
~ —0
o 0

K-mer position

Error correction

Simple algorithm, given a count threshold t:

For each read:
For each k-mer:
If k-mer count < t:

Examine k-mer’s neighbors within some Hamming/edit distance.
If neighbor has count > t, replace old k-mer with neighbor.

10000
|

—6— Error-free
—— 0.1% error

Pick t corresponding to dip
between the peaks

distinct k-mers with that count

......
'''''

k-mer count

Error correction: implementation excerpt

def correctlmm(read, k, kmerhist, alpha, thresh):

"'' Return an error-corrected version of read. k = k-mer length.
kmerhist is kmer count map. alpha is alphabet. thresh is
count threshold above which k-mer is considered correct. '''

Iterate over k-mers in read

for i in range(9, len(read)-(k-1)):
kmer = read[i:i+k]

If k-mer is infrequent...
if kmerhist.get(kmer, 0) <= thresh:
Look for a frequent neighbor
for newkmer in neighborsimm(kmer, alpha):
if kmerhist.get(newkmer, 0) > thresh:
replace with neighbor
read = read[:i] + newkmer + read[i+k:]
break
return read

Full Python example: http://bit.ly/CG_ErrorCorrect

http://bit.ly/CG_ErrorCorrect

distinct k-mers with that count

Error correction: results

1000 2000 3000 4000

0

Corrects 99.2% of errors in an example with 0.1% error added

Before

—— Error-free
—— 0.1% error

0 50 100 150

k-mer count

distinct k-mers with that count

1000 2000 3000 4000

0

After

—— Error-free
—6— 0.1% error, corrected

k-mer count

From 194K k-mers occurring exactly once to just 355

Error correction: results

Also works for 1% error...
Uncorrected, graph size is off the chart

Corrected, graph size is near G bound

—o6— Error-free
1% error, corrected

o

S —o—
= —e— 1% error, uncorrected
N —— G bound

100000

60000

De Bruijn graph edges

! ! !
S 10 15

Average Lambda phage coverage

..provided enough coverage to distinguish frequent/infrequent

Error correction

To work well:

Average coverage & k must be such that we can distinguish
frequent from infrequent k-mers

k-mer neighborhood explored must be broad enough to find
frequent neighbors. Depends on error rate and k.

Alternately, we might give up on correcting and simply
remove bad k-mers

Data structure for storing k-mer counts should be smaller than
the De Bruijn graph

Otherwise, what's the point? &

Data structures for error correction

Don’t need 100% accurate k-mer
%&N counts; just have to distinguish
g 10 0O, 0/0(0]0 10 10 1 0 .
— 5 frequent and infrequent
S ‘__‘_\\f&_______: T
w y - "
Bloom filters : -
/_/-'—" +1
Song L, Florea L, Langmead B. Lighter: fast and hi(value) L—1
memory-efficient sequencing error correction 2
without counting. Genome Biology. 2014;15(11):509. A d
hdvalue)
\\\"\,¥ ’ﬂ |
occupieds |
runends
remainders . ha(f) CountMin sketches

Crusoe MR, Alameldin HF, Awad S, Boucher E, ..., Brown CT.
The khmer software package: enabling efficient nucleotide

COU ntl ng q UOtient ﬁ IterS sequence analysis. F1000 Research. 2015 Sep 25;4:900.

Pandey P, Bender MA, Johnson R, Patro R. Squeakr: an
exact and approximate k-mer counting system.
Bioinformatics. 2017; btx636.

Assembly alternatives

! |

[Overlapﬁ [Error correctlor(
v

[Layout 4 [De Bruun grapl{
v

[Reﬁne

y v
[Scaffolding j

[Consens
|

Error correction should
remove most tips &islands;
rest can be removed here,
leveraging graph structure

, ‘ = N gL

A f '
P AN 1)
TCA .

‘!"_' B 7 GATATTC
S 3 3. 9%

7 A
N N
N i S
MRS "“‘ii(‘
O 4L NN /' i
\ SR A W)))

CCCCC

Maternal 'ﬁgik
GTAGTCTCGGCATATGCGCCG \ﬁm»
Ty k=

GTAGTCTCGGTATATGCGCCG o

Paternal

GGGGG

Assembly alternatives

! |

[Overlapﬁ [Error correctior{
v v

[Layout 4 [De Bruijn grapl{
v ¥

[Consensuﬁ [Refine {

Remove remaining
¢ ¢ Ine 1 /g 1//
Scaffoldin islands" “tips” and
calrolding “bubbles” so that contigs
are more obvious

