De Bruijn Graph Assembly

Ben Langmead

=X
@
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

Department of Computer Science

Please sign guestbook (www.langmead-lab.org/teaching-materials)
|@ @ | to tell me briefly how you are using the slides. For original Keynote

files, email me (ben.langmead@gmail.com).

http://www.langmead-lab.org/teaching-materials
mailto:ben.langmead@gmail.com

Different kind of graph

“tomorrow and tomorrow and tomorrow”

S0\
tomorrow and

N——

An edge represents an ordered pair of adjacent words
in the input

Multigraph: there can be more than one edge from
node A to node B

De Bruijn graph

genome: AAABBBBA
3-mers: AAA, AAB, ABB, BBB, BBB, BBA

AN NN

L/R2-mers: AA,AA AA,AB AB,BB BB,BB BB,BB BB,BA

AB

. One edge per k-mer
(CYAA BA o
One node per distinct k-1-mer
BB

De Bruijn graph

AB

(CYAA ‘BA
BB

Walk crossing each edge exactly once gives a reconstruction
of the genome

De Bruijn graph

1 , JAB
CYAA 3 \BA
BBY6
5
AAABBBBA

Walk crossing each edge exactly once gives a reconstruction
of the genome. This is an Eulerian walk.

De Bruijn graph

Aside: how do you pronounce "De Bruijn"?

There is debate:

https://www.biostars.org/p/7186/

| still don't quite know. | say "De Broin"
(rhymes with "groin")

| asked a Dutch person once; his

pronunciation sounded more like Nicolaas Govert

"De Brown" de Bruijn
1918 - 2012

https://www.biostars.org/p/7186/

Directed multigraph

Directed multigraph G(V, E) consists of set of vertices, V and
multiset of directed edges, E

Otherwise, like a directed graph

Node's indegree = # incoming edges

Node’s outdegree = # outgoing edges

De Bruijn graph is a directed multigraph

O
C d
V=1{a b ¢ d}
E={(a, b),(a,b)(a,b),(ac),lcDb)}

———-Repeated —

Eulerian walk definitions and statements

Node is balanced if indegree equals outdegree

Node is semi-balanced if indegree differs from outdegree by 1
Graph is connected if each node can be reached by some other node
Eulerian walk visits each edge exactly once

Not all graphs have Eulerian walks. Graphs that do are Eulerian.
(For simplicity, we won't distinguish Eulerian from semi-Eulerian.)

A directed, connected graph is Eulerian if AB

and only if it has at most 2 semi-balanced |

nodes and all other nodes are balanced e AA 1 ‘BA
Jones and Pevzner section 8.8 BB

U

De Bruijn graph

Back to de Bruijn graph

AS AAA, AAB, ABB, BBB, BBA

&Y /@ 7 /1 TN NN

v AA, AA, AA, AB, AB, BB, BB, BB, BB, BA
BB L R L R L R L R L R

d

Is it Eulerian? Yes

Argument 1: AA—- AA—- AB - BB - BB — BA

Argument 2: AA and BA are semi-balanced, AB and BB are balanced

De Bruijn graph

A procedure for making a de Bruijn graph
fora genome

Assume “perfect sequencing”: each genome k-mer
is sequenced exactly once with no errors

Pick a substring length k: 5

Start with an input string: a_long long long time

|
Take each k mer and split I‘L/on\g‘_
into left and right k-1 mers long ong

Add k-1 mers as nodes to de Bruijn graph
(if not already there), add edge from left k-1
mer to right k-1 mer

De Bruijn graph

Eany

First 8 k-mer additions, k=5
a_long long long time

De Bruijn graph

Last 5 k-mer additions, k=5
a_long long long time

De Bruijn graph

Procedure yields Eulerian graph. Why?

Node for k-1-mer from left end is semi-balanced
with one more outgoing edge than incoming *

Node for k-1-mer at right end is semi-balanced
with one more incoming than outgoing *

Other nodes are balanced since # times k-1-mer occurs
as a left k-1-mer = # times it occurs as a right k-1-mer

* Unless left- and right-most k-1-mers are equal

De Bruijn graph

What string does the Eulerian path spell out?
a_long long long time

The original string! No collapsing!

De Bruijn graph builder implementation

class DeBruijnGraph:
""" A de Bruijn multigraph built from a collection of strings.
User supplies strings and k-mer length k. Nodes of the de
Bruijn graph are k-1-mers and edges join a left k-1-mer to a
right k-1-mer. """

@staticmethod

def chop(st, k):
""" Chop a string up into k mers of given length """
for i in xrange(9, len(st)-(k-1)): yield st[i:i+k]

class Node:
""" Node in a de Bruijn graph, representing a k-1 mer
def __init_ (» kmlmer):
Jkmimer = kmlmer

def __hash__():
return hash(.kmlmer)

def _init_ (, strIter, k):
""" Build de Bruijn multigraph given strings and k-mer length k """

.G = {}
.nodes = {}
k =Kk
for st in strIter: 7
for kmer in .chop(st, k):
kmiL, kmiR = kmer[:-1], kmer[1:]
nodeL, nodeR = R -
if kmlL in .hodes: T
nodelL = .nodes[kmilL]
else:
nodelL = .nhodes[kmlL] = .Node (kmlL)
if kmlR in .hodes:
nodeR = .nodes[kmilR]
else:
nodeR = .nodes[kmiR] = .Node (km1R)
.G.setdefault(nodeL, []).append(nodeR)

Chop string into k-mers

For each k-mer, find left
and right k-1-mers

Create corresponding
nodes (if necessary) and

add edge

De Bruijn graph
For Eulerian graph, Eulerian walk can be found in O(| E |) time. | E | is # edges.

Convert graph into one with
Eulerian cycle (add an edge tour = []
to make all nodes balanced),
then use this recursive
procedure

src = g.iterkeys().next()

def visit(n):
while len(g[n]) > o:

dst = g[n].pop()
__visit(dst)

Insight: If Ciis a cyclein an tour.append(n)

Eulerian graph, then after
removing edges of C,
remaining connected tour = tour[::-1][:-1]
components are also Eulerian

__visit(src)

http://www.algorithmist.com/index.php/Eulerian_tour

http://www.algorithmist.com/index.php/Eulerian_tour

De Bruijn graph

Full illustrative de Bruijn graph and Eulerian walk
implementation:

http://bit.ly/CG_DeBruijn

Example where Eulerian walk gives correct answer for

small k whereas Greedy-SCS could spuriously collapse
repeat:

>>> G = DeBruijnGraph(["a_long long long time"], 5)
>>> print G.eulerianWalkOrCycle()

['a_lo', ' lon', 'long', 'ong ', 'ng 1', 'g lo',

' lon', 'long’', 'ong ', 'ng 1', 'g lo', ' lon',
‘long', 'ong ', 'ng t', 'g ti', ' tim', 'time']

http://bit.ly/CG_DeBruijn

De Bruijn graph

>>> st "to_every thing turn_turn_turn_there_is a season”

>>> G = DeBruijnGraph([st], 4)

>>> path = G.eulerianWalkOrCycle() # Fast! Linear in # edges

>>> superstring = path[0] + ''.join(map(lambda x: x[-1], path[1:]))

>>> print superstring
to _every thing turn_turn_turn_there is a season

http://bit.ly/CG_DeBruijn

Recall: This is not generally possible or tractable in the overlap/SCS
formulation

http://bit.ly/CG_DeBruijn

De Bruijn graph

Assuming perfect sequencing, procedure yields
graph with Eulerian walk that can be found
efficiently.

We saw cases where Eulerian walk corresponds to
the original superstring. Is this always the case?

De Bruijn graph

Problem 1: Repeats still cause misassembles
/A-AB-BE-EF-FA-AB-BC-CD-DA-AB - BY

/A-AB-BC-CD-DA-AB-BE—-EF-FA-AB-BY

Problem 2:

We've been building DBGs assuming “perfect”
sequencing: each k-mer reported exactly once,
no mistakes. Real datasets aren't like that.

Third law of assembly

Repeats make assembly difficult; whether we can

assem
and re

ole without mistakes depends on length of reads

netitive patterns in genome

Collapsing: a_long long long time

!

a_long long time

Shuffling:

.

De Bruijn graph

genome: AAABBBBA
3-mers: AAA, AAB, ABB, BBB, BBB, BBA

AN NN

L/R2-mers: AA,AA AA,AB AB,BB BB,BB BB,BB BB,BA

AB

. One edge per k-mer
(CYAA BA o
One node per distinct k-1-mer
BB

De Bruijn graph

>>> st = "to_every thing turn_turn_turn_there_is a season”
>>> G = DeBruijnGraph([st], 4)
>>> path = G.eulerianWalkOrCycle() # Fast! Linear in # edges

>>> superstring = path[@] + ''.join(map(lambda x: x[-1], path[1:]))
>>> print superstring
to_every thing turn_turn_turn_there is a season

http://bit.ly/CG_DeBruijn

OROnORON0
ARy

http://bit.ly/CG_DeBruijn

De Bruijn graph

Case where k = 4 works:

>>> st = "to_every thing turn_turn_turn_there is a season”

>>> G = DeBruijnGraph([st], 4)

>>> path = G.eulerianWalkOrCycle()

>>> superstring = path[@] + ''.join(map(lambda x: x[-1], path[1:]))

>>> print superstring
to_every thing turn_turn_turn_there is a season

But k= 3 does not:

st = "to _every thing turn_turn_turn_there is a season"
= DeBruijnGraph([st], 3)
path = G.eulerianWalkOrCycle()
superstring = path[@] + ''.join(map(lambda x: x[-1], path[1:]))

print superstring

De Bruijn graph

Case where k = 4 works:

>>> st = "to_every thing turn_turn_turn_there is a season”

>>> G = DeBruijnGraph([st], 4)

>>> path = G.eulerianWalkOrCycle()

>>> superstring = path[@] + ''.join(map(lambda x: x[-1], path[1:]))

>>> print superstring
to_every thing turn_turn_turn_there is a season

But k= 3 does not:

>>> st = "to_every thing turn_turn_turn_there_is a season”

>>> G = DeBruijnGraph([st], 3)

>>> path = G.eulerianWalkOrCycle()

>>> superstring = path[@] + ''.join(map(lambda x: x[-1], path[1:]))

>>> print superstring
to_every turn_turn_thing turn_there is a season

Due to repeats that are unresolvable at k = 3

De Bruijn graph

Problem 1: Repeats still cause misassembles
/A-AB-BE-EF-FA-AB-BC-CD-DA-AB - BY

/A-AB-BC-CD-DA-AB-BE—-EF-FA-AB-BY

Problem 2:

We've been building DBGs assuming “perfect”
sequencing: each k-mer reported exactly once,
no mistakes. Real datasets aren't like that.

De Bruijn graph

Gaps in coverage (missing k-mers) lead
to disconnected or non-Eulerian graph

Graph fora _long long long time, k=5:

De Bruijn graph

Gaps in coverage (missing k-mers) lead
to disconnected or non-Eulerian graph

Graphfora long long long time, k=5 but omitting ong t:

De Bruijn graph

Coverage differences make graph non-Eulerian

Graph for a_long long long time,
k =5, with extra copy of ong_t:

4 semi-balanced nodes

De Bruijn graph

Errors and differences between chromosomes
also lead to non-Eulerian graphs

Graph for a_long long long time, k=15 but with
error that turns one copy of long_into 1xng_

De Bruijn graph

Casting assembly as Eulerian walk is appealing, but not practical
Uneven coverage, sequencing errors, etc make graph non-Eulerian

Even if graph were Eulerian, repeats yield many possible walks

Kingsford, Carl, Michael C. Schatz, and Mihai Pop. "Assembly complexity of
prokaryotic genomes using short reads." BMC bioinformatics 11.1 (2010): 21.

De Bruijn Superwalk Problem (DBSP) seeks a walk over the De Bruijn
graph, where walk contains each read as a subwalk

Proven NP-hard!

Medvedev, Paul, et al. "Computability of models for sequence assembly."
Algorithms in Bioinformatics. Springer Berlin Heidelberg, 2007. 289-301.

